-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_ap.py
299 lines (256 loc) · 9.95 KB
/
eval_ap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------
import xml.etree.ElementTree as ET
import os,sys
#import cPickle
import _pickle as cPickle
import numpy as np
sys.path.append("stats")
from eval_all import get_det_result_name, get_image_txt_name
from utils import load_class_names
def convert_back_boundingbox(cx,cy,w,h):
''' This function to convert the bb as cx,cy,w,h of YOLO to original bb xmin,ymin,xmax,ymax'''
img_w,img_h = 640,512
cx *= img_w
w *= img_w
cy *= img_h
h *= img_h
xmin = cx - w/2.0
ymin = cy - h/2.0
xmax = cx + w/2.0
ymax = cy + h/2.0
return xmin,ymin,xmax,ymax
def parse_rec(filename,classlist):
""" Parse a txt file from Faster RCNN of SOTA papers """
with open(filename, 'r') as f:
alllines = f.readlines()
lines = [line.strip() for line in alllines]
objects = []
for line in lines:
obj_struct = {}
obj_struct['pose'] = '0'
obj_struct['truncated'] = 0
obj_struct['difficult'] = 0
arr = line.split(' ')
obj_id = int(arr[0])
obj_struct['name'] = classlist[obj_id]
cx = float(arr[1])
cy = float(arr[2])
w = float(arr[3])
h = float(arr[4])
xmin, ymin, xmax, ymax = convert_back_boundingbox(cx,cy,w,h)
obj_struct['bbox'] = [xmin,ymin,xmax,ymax]
objects.append(obj_struct)
return objects
# def parse_rec(filename):
# """ Parse a PASCAL VOC xml file """
# tree = ET.parse(filename)
# objects = []
# for obj in tree.findall('object'):
# obj_struct = {}
# obj_struct['name'] = obj.find('name').text
# obj_struct['pose'] = obj.find('pose').text
# obj_struct['truncated'] = int(obj.find('truncated').text)
# obj_struct['difficult'] = int(obj.find('difficult').text)
# bbox = obj.find('bndbox')
# obj_struct['bbox'] = [float(bbox.find('xmin').text),
# float(bbox.find('ymin').text),
# float(bbox.find('xmax').text),
# float(bbox.find('ymax').text)]
# objects.append(obj_struct)
#
# return objects
def eval_ap(rec, prec):
""" ap = eval_ap(rec, prec, [use_07_metric])
Compute VOC AP given precision and recall.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def get_recs_from_cache(imagenames, cachedir, cachename,classlist):
# first load gt
if not os.path.isdir(cachedir):
os.mkdir(cachedir)
cachefile = os.path.join(cachedir, cachename)
if not os.path.isfile(cachefile):
# load annots
recs = {}
for i, imagename in enumerate(imagenames):
recs[imagename] = parse_rec(get_image_txt_name(imagename),classlist)
#if i % 100 == 0:
# print ('Reading annotation for {:d}/{:d}'.format(
# i + 1, len(imagenames)))
# save
# print ('Saving cached annotations to {:s}'.format(cachefile))
with open(cachefile, 'wb') as f:
cPickle.dump(recs, f)
else:
# load
# print ('loaded cached annotations from {:s}'.format(cachefile))
with open(cachefile, 'rb') as f:
recs = cPickle.load(f)
try:
for imagename in imagenames:
recs[imagename]
except Exception as e:
print("Exception: {0}".format(e))
print ('\t{:s} is corrupted. retry!!'.format(cachefile))
os.remove(cachefile)
recs = get_recs_from_cache(imagenames, cachedir, cachename,classlist)
return recs
def get_class_det_result(detpath, classname):
lines = []
cls = classes.index(classname)
imagename = None
with open(detpath, 'r') as f:
lines = f.readlines()
splitlines = [x.strip().split(' ') for x in lines]
lines = []
for i, l in enumerate(splitlines):
if l[0] == '#' and l[2] == '=':
if l[1] == 'imagepath':
imagename = l[3]
elif l[0] != '' and l[0] != '#':
if int(l[0]) == cls:
lines.append([imagename] + l[1:])
assert(imagename is not None)
#print("{:s} {:s} {:d}".format(detpath, classname, len(lines)))
return lines
def get_class_detection(imagenames, classname ):
# load annots
classlines = []
for i, imagename in enumerate(imagenames):
det = get_det_result_name(imagename)
lines = get_class_det_result(det, classname)
classlines.extend(lines)
#print(classlines)
ids = [x[0] for x in classlines]
conf = np.array([float(x[1])for x in classlines])
bb = np.array([[float(z)for z in x[2:]] for x in classlines])
#print(ids)
#print(bb)
#print(conf)
return ids, conf, bb
def eval(imagelist, classname, cachedir, classlist, ovthresh=0.5):
"""rec, prec, ap = eval(imagelist, classname, [ovthresh])
Top level function that does the PASCAL VOC evaluation.
imagelist: Text file containing the list of images, one image per line.
classname: Category name (duh)
cachedir: Directory for caching the annotations
[ovthresh]: Overlap threshold (default = 0.5)
"""
# read list of images
with open(imagelist, 'r') as f:
lines = f.readlines()
imagenames = [x.strip() for x in lines]
# cachedir caches the annotations in a pickle file
recs = get_recs_from_cache(imagenames, cachedir, 'annots.pk',classlist)
# extract gt objects for this class
class_recs = {}
npos = 0
for imagename in imagenames:
R = [obj for obj in recs[imagename] if obj['name'] == classname]
bbox = np.array([x['bbox'] for x in R])
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
det = [False] * len(R)
npos = npos + sum(~difficult)
class_recs[imagename] = {'bbox': bbox,
'difficult': difficult,
'det': det}
image_ids, confidence, BB = \
get_class_detection(imagenames, classname )
# sort by confidence
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
BB = BB[sorted_ind, :]
#print(image_ids)
image_ids = [image_ids[x] for x in sorted_ind]
# go down dets and mark TPs and FPs
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
R = class_recs[image_ids[d]]
#print("%s (%s) " % (image_ids[d],classname), end='')
#print(R)
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
if BBGT.size > 0:
# compute overlaps
# intersection
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin = np.maximum(BBGT[:, 1], bb[1])
ixmax = np.minimum(BBGT[:, 2], bb[2])
iymax = np.minimum(BBGT[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih
# union
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
(BBGT[:, 2] - BBGT[:, 0] + 1.) *
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
overlaps = inters / uni
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
if ovmax > ovthresh:
if not R['difficult'][jmax]:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
# compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = eval_ap(rec, prec)
return rec, prec, ap
def _do_python_eval(testlist, namelist, output_dir = 'output'):
cachedir = os.path.join(output_dir, 'annotations_cache')
aps = []
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
global classes
classes = load_class_names(namelist)
for i, cls in enumerate(classes):
rec, prec, ap = eval(testlist, cls, cachedir, classes, ovthresh=0.5)
aps += [ap]
print('AP for {} = {:.4f}'.format(cls, ap))
with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f:
cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
print('Mean AP = {:.4f}'.format(np.mean(aps)))
print('~~~~~~~~~~~~~')
print(' Results:')
print('-------------')
for i, ap in enumerate(aps):
print('{:<10s}\t{:.3f}'.format(classes[i], ap))
print('=============')
print('{:^10s}\t{:.3f}'.format('Average', np.mean(aps)))
print('~~~~~~~~~~~~~')
print('')
if __name__ == '__main__':
if len(sys.argv) == 3:
testlist = sys.argv[1]
namelist = sys.argv[2]
_do_python_eval(testlist, namelist, output_dir = 'output')
else:
print("Usage: %s testlist namelist" % sys.argv[0] )