The scripts of training.py
and evaluation.py
accept various parameters to control different aspects of the training and evaluation.
- Conversion: examples based on conversion algorithm, e.g., QCFS
- DirectTraining: examples based on direction training, e.g., TET and TEBN
#!/bin/bash
python ./scripts/training.py \
base.batch_size=128 \
base.epochs=300 \
base.gpu_id='1' \
base.seed=1200 \
base.port='11152' \
base.data='cifar10' \
base.model='sew_resnet18' \
base.dataset_path='datasets' \
\
snn-train.method='snn' \
snn-train.arch_conversion=False \
snn-train.ann_constrs='baseconstrs' \
snn-train.snn_layers='simplebaselayer' \
snn-train.regularizer='rcs' \
snn-train.TET=True \
snn-train.multistep=True \
snn-train.add_time_dim=True \
snn-train.T=6 \
snn-train.alpha=0.00
base.batch_size
: Specifies the batch size for training. Default is128
.base.epochs
: Defines the number of epochs for training. Default is300
.base.gpu_id
: Indicates the GPU ID to be used for training. Default is'1'
.base.seed
: Sets the random seed for reproducibility. Default is1200
.base.port
: Port number for distributed training. Default is'11152'
.base.data
: Dataset to be used. For example,cifar10
.base.model
: Model architecture to be used. For example,sew_resnet18
,vgg
base.dataset_path
: Path to the dataset directory. Default is'datasets'
.
snn-train.method
: Training method. For example,'snn'
.snn-train.arch_conversion
: Boolean to enable or disable architecture conversion. Default isFalse
.snn-train.ann_constrs
: ANN constraints. For example,'baseconstrs'
.snn-train.snn_layers
: Specifies the SNN layers. For example,'simplebaselayer'
.snn-train.regularizer
: Regularizer to be used. For example,'rcs'
.snn-train.TET
: Boolean to enable or disable TET. Default isTrue
.snn-train.multistep
: Boolean to enable or disable multi-step training. Default isTrue
.snn-train.add_time_dim
: Boolean to add a time dimension. Default isTrue
.snn-train.T
: Time steps for SNN training. Default is6
.snn-train.alpha
: Alpha parameter for the SNN training. Default is0.00
.
sh scripts/DirectTraining/tet/training.sh
or
sh scripts/DirectTraining/tet/evaluation.sh