-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathserver.py
437 lines (318 loc) · 13.9 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import os
import cv2
import time
import numpy as np
import matplotlib.pyplot as plt
from collections import deque, Counter
import tensorflow as tf
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
from tensorflow.python.saved_model import tag_constants
import core.utils as utils
from core.config import cfg
from deep_sort import preprocessing, nn_matching
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
from tools import generate_detections as gdet
from flask import Flask, Response, render_template, request, redirect, url_for, send_file
import urllib.request
WEIGHTS = './checkpoints/yolov4-tiny-416'
# WEIGHTS = './checkpoints/yolov4-416' # https://drive.google.com/file/d/1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT/view
TINY = True if WEIGHTS.endswith('tiny-416') else False
IMG_SIZE = 416
CONF_THRESHOLD = 0.5 # object confidence threshold
IOU_THRESHOLD = 0.45 # IOU threshold for NMS
MAX_COSINE_DISTANCE = 0.4
NN_BUDGET = None
NMS_MAX_OVERLAP = 1.0
PEAK_TIME_WINDOW = 60 # seconds
upload_dir = 'temp'
def getAverageVehiclesPerSecond(arr, FPS):
tots = []
for i in range(0, len(arr) - FPS + 1, FPS):
sum_ = 0
for j in range(i, i + FPS):
sum_ += arr[j]
tots.append(sum_ / FPS)
return round(np.mean(tots), 2)
def getStart(arr, k):
res = 0
start = 0
for i in range(len(arr) - k):
sum_ = 0
for j in range(i, i + k):
sum_ += arr[j]
if sum_ > res:
res = sum_
start = i
return start
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
# configure GPU
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
# initialize deep sort
model_filename = 'model_data/mars-small128.pb'
encoder = gdet.create_box_encoder(model_filename, batch_size=1)
# calculate cosine distance metric
metric = nn_matching.NearestNeighborDistanceMetric("cosine", MAX_COSINE_DISTANCE, NN_BUDGET)
# initialize tracker
tracker = Tracker(metric)
# load configuration for object detector
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(TINY)
saved_model_loaded = tf.saved_model.load(WEIGHTS, tags=[tag_constants.SERVING])
infer = saved_model_loaded.signatures['serving_default']
# read in all class names from config
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
allowed_classes = [
'car',
'motorbike',
'bus',
'truck',
]
# initialize color map
cmap = plt.get_cmap('tab20b')
colors = [cmap(i)[:3] for i in np.linspace(0, 1, 20)]
forwardDensity = []
backwardDensity = []
stoppedVehiclesList = []
gateCounter = []
peakTimeVehicles = []
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'temp'
@app.route('/', methods=['GET', 'POST'])
def main():
if request.method == 'POST':
video = request.files['video']
url = request.form.get('url')
if url != '':
urllib.request.urlretrieve(url, os.path.join(upload_dir, 'video.mp4'))
else:
video.save(os.path.join(upload_dir, 'video.mp4'))
return redirect(url_for('detection'))
return render_template('index.html')
@app.route('/detection')
def detection():
return render_template('detection.html')
@app.route('/download')
def download():
return send_file(os.path.join(upload_dir, 'out.avi'), as_attachment=True)
def stream():
global count, movingVehicles, stoppedVehicles, currentForwardDensity, currentBackwardDensity, fps
global peakTimeStart, averageForwardDensity, averageBackwardDensity, averageVehicles, averageStopTime
peakTimeStart = '0'
averageForwardDensity = '0'
averageBackwardDensity = '0'
averageVehicles = '0'
averageStopTime = '0'
count = '0'
movingVehicles = '0'
stoppedVehicles = '0'
currentForwardDensity = '0'
currentBackwardDensity = '0'
fps = '0'
videoCapture = cv2.VideoCapture("temp/video.mp4")
width = int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT))
FPS = int(videoCapture.get(cv2.CAP_PROP_FPS))
peakTimeFrames = PEAK_TIME_WINDOW * FPS
codec = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(os.path.join(upload_dir, 'out.avi'), codec, FPS, (width, height))
pts = [deque(maxlen=30) for _ in range(1000)]
densityForward = deque(maxlen=FPS)
densityBackward = deque(maxlen=FPS)
while True:
ret, frame = videoCapture.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image_data = cv2.resize(frame, (IMG_SIZE, IMG_SIZE))
image_data = image_data / 255.
image_data = image_data[np.newaxis, ...].astype(np.float32)
start_time = time.time()
batch_data = tf.constant(image_data)
pred_bbox = infer(batch_data)
for _, value in pred_bbox.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50,
max_total_size=50,
iou_threshold=IOU_THRESHOLD,
score_threshold=CONF_THRESHOLD
)
# convert data to numpy arrays and slice out unused elements
num_objects = valid_detections.numpy()[0]
bboxes = boxes.numpy()[0]
bboxes = bboxes[0:int(num_objects)]
scores = scores.numpy()[0]
scores = scores[0:int(num_objects)]
classes = classes.numpy()[0]
classes = classes[0:int(num_objects)]
# format bounding boxes from normalized ymin, xmin, ymax, xmax ---> xmin, ymin, width, height
original_h, original_w, _ = frame.shape
bboxes = utils.format_boxes(bboxes, original_h, original_w)
# store all predictions in one parameter for simplicity when calling functions
pred_bbox = [bboxes, scores, classes, num_objects]
# loop through objects and use class index to get class name, allow only classes in allowed_classes list
names = []
deleted_indx = []
for i in range(num_objects):
class_indx = int(classes[i])
class_name = class_names[class_indx]
if class_name not in allowed_classes:
deleted_indx.append(i)
else:
names.append(class_name)
names = np.array(names)
count = len(names)
# delete detections that are not in allowed_classes
bboxes = np.delete(bboxes, deleted_indx, axis=0)
scores = np.delete(scores, deleted_indx, axis=0)
# encode yolo detections and feed to tracker
features = encoder(frame, bboxes)
detections = [Detection(bbox, score, class_name, feature) for bbox, score, class_name, feature in zip(bboxes, scores, names, features)]
# run non-maxima supression
boxs = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
classes = np.array([d.class_name for d in detections])
indices = preprocessing.non_max_suppression(boxs, classes, NMS_MAX_OVERLAP, scores)
detections = [detections[i] for i in indices]
# Call the tracker
tracker.predict()
tracker.update(detections)
moving = []
stopped = []
forward = []
backward = []
counter = []
# update tracks
for track in tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
bbox = track.to_tlbr()
class_name = track.get_class()
color = colors[int(track.track_id) % len(colors)]
color = [i * 255 for i in color]
# draw bounding boxes
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), color, 1)
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1] - 30)), (int(bbox[0]) + (len(class_name) + len(str(track.track_id))) * 17, int(bbox[1])), color, -1)
cv2.putText(frame, class_name + "-" + str(track.track_id), (int(bbox[0]), int(bbox[1] - 10)), 0, 0.75, (255, 255, 255), 1)
# calculate centroid
center = (int(((bbox[0]) + (bbox[2])) / 2), int(((bbox[1]) + (bbox[3])) / 2))
pts[track.track_id].append(center)
# draw trails
for j in range(1, len(pts[track.track_id])):
if pts[track.track_id][j - 1] is None or pts[track.track_id][j] is None:
continue
cv2.line(frame, (pts[track.track_id][j - 1]), (pts[track.track_id][j]), color, 2)
centerY = int(((bbox[1]) + (bbox[3])) / 2)
if centerY <= int(height * 0.7 + height / 20) and centerY >= int(height * 0.7 - height / 20):
counter.append(int(track.track_id))
if len(pts[track.track_id]) > 5 and abs(pts[track.track_id][-5][1] - pts[track.track_id][-1][1]) < 1:
stopped.append(track.track_id)
stoppedVehiclesList.append(track.track_id)
else:
moving.append(track.track_id)
if (pts[track.track_id][0][1] < pts[track.track_id][-1][1]):
backward.append(track.track_id)
else:
forward.append(track.track_id)
fps = 1.0 / (time.time() - start_time)
movingVehicles = len(set(moving))
stoppedVehicles = len(set(stopped))
forwardVehicles = len(set(forward))
backwardVehicles = len(set(backward))
densityForward.append(forwardVehicles)
densityBackward.append(backwardVehicles)
currentForwardDensity = np.mean(densityForward)
currentBackwardDensity = np.mean(densityBackward)
forwardDensity.append(currentForwardDensity)
backwardDensity.append(currentBackwardDensity)
gateCounter.append(len(set(counter)))
peakTimeVehicles.append(count)
# print(f'[INFO] vehicles in frame {count} | moving {movingVehicles} | stopped {stoppedVehicles} | forward density {currentForwardDensity:.2f} | backward density {currentBackwardDensity:.2f} | fps {fps:.2f}')
result = np.asarray(frame)
result = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(result)
frame = cv2.imencode('.jpg', result)[1].tostring()
yield (b'--frame\r\n'b'Content-Type: text/plain\r\n\r\n' + frame + b'\r\n')
else:
videoCapture.release()
out.release()
counter = Counter(stoppedVehiclesList)
t = [counts for (_, counts) in counter.items()]
peakTimeStart = round(getStart(peakTimeVehicles, peakTimeFrames) / FPS, 2)
min, s = divmod(peakTimeStart, 60)
peakTimeStart = f'{min} min {s} sec'
averageForwardDensity = round(np.mean(forwardDensity), 2)
averageBackwardDensity = round(np.mean(backwardDensity), 2)
averageVehicles = getAverageVehiclesPerSecond(gateCounter, FPS)
averageStopTime = round(np.mean(t) / FPS, 2)
break
@app.route('/video_feed')
def video_feed():
return app.response_class(stream(), mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/count_feed')
def count_feed():
def generate():
yield str(count)
return Response(generate(), mimetype='text/html')
@app.route('/movingVehicles_feed')
def movingVehicles_feed():
def generate():
yield str(movingVehicles)
return Response(generate(), mimetype='text/html')
@app.route('/stoppedVehicles_feed')
def stoppedVehicles_feed():
def generate():
yield str(stoppedVehicles)
return Response(generate(), mimetype='text/html')
@app.route('/currentForwardDensity_feed')
def currentForwardDensity_feed():
def generate():
yield str(round(float(currentForwardDensity), 2))
return Response(generate(), mimetype='text/html')
@app.route('/currentBackwardDensity_feed')
def currentBackwardDensity_feed():
def generate():
yield str(round(float(currentBackwardDensity), 2))
return Response(generate(), mimetype='text/html')
@app.route('/fps_feed')
def fps_feed():
def generate():
yield str(round(float(fps), 2))
return Response(generate(), mimetype='text/html')
@app.route('/averageVehiclesMean_feed')
def averageVehiclesMean_feed():
def generate():
yield str(averageVehicles)
return Response(generate(), mimetype='text/html')
@app.route('/averageStopTime_feed')
def averageStopTime_feed():
def generate():
yield str(averageStopTime)
return Response(generate(), mimetype='text/html')
@app.route('/averageDensityForwardMean_feed')
def averageDensityForwardMean_feed():
def generate():
yield str(averageForwardDensity)
return Response(generate(), mimetype='text/html')
@app.route('/averageDensityBackwardMean_feed')
def averageDensityBackwardMean_feed():
def generate():
yield str(averageBackwardDensity)
return Response(generate(), mimetype='text/html')
@app.route('/peakTimeStart_feed')
def peakTimeStart_feed():
def generate():
yield str(peakTimeStart)
return Response(generate(), mimetype='text/html')
if __name__ == '__main__':
app.run()