forked from y-ncao/Python-Study
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCombination_Sum_II.py
40 lines (35 loc) · 1.36 KB
/
Combination_Sum_II.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
"""
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
"""
class Solution:
# @param candidates, a list of integers
# @param target, integer
# @return a list of lists of integers
def combinationSum2(self, candidates, target):
ret = []
self.combinationSum_helper(sorted(candidates), target, [], ret) # Look into the question, need sorted
return ret
def combinationSum_helper(self, candidates, target, res, ret):
if target == 0:
ret.append(res[:])
return
for i, num in enumerate(candidates):
if target < num or (i > 0 and candidates[i] == candidates[i-1]):
continue
res.append(num)
self.combinationSum_helper(candidates[i+1:], target - num, res, ret)
res.pop()
# Note some diffs with I:
# 1. line 32 check dup
# 2. line 35 [i+1:]