forked from y-ncao/Python-Study
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPermutations_II.py
47 lines (41 loc) · 1.36 KB
/
Permutations_II.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
For example,
[1,1,2] have the following unique permutations:
[1,1,2], [1,2,1], and [2,1,1].
"""
class Solution:
# @param num, a list of integer
# @return a list of lists of integers
def permuteUnique(self, num):
return self.permuteUnique_2(num)
def permuteUnique_1(self, num):
ret = []
self.permuteUnique_helper(sorted(num), [], ret)
return ret
def permuteUnique_helper(self, num, res, ret):
if len(num) == 0:
ret.append(res[:])
return
for i, n in enumerate(num):
if i > 0 and num[i] == num[i-1]:
continue
res.append(n)
self.permuteUnique_helper(num[:i] + num[i+1:], res, ret)
res.pop()
# Note:
# Should do it in this way
# 1. line 17 sorted(num)
# 2. line 25 check if already used as permutation
def permuteUnique_2(self, num):
if len(num) == 0:
return [[]]
unique_perm = {}
ret = []
for i, n in enumerate(num):
if n not in unique_perm:
unique_perm[n] = True
rest_perms = self.permuteUnique_2(num[:i]+num[i+1:])
for perm in rest_perms:
ret.append([n,]+perm)
return ret