-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_model_search.py
44 lines (34 loc) · 1.28 KB
/
run_model_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import embeddingholder
import train
import mydataloader
import config
from config import *
print('Start script: model search')
embedding_holder = embeddingholder.EmbeddingHolder(PATH_WORD_EMBEDDINGS)
if ONLY_TEST:
lrs = [0.0002]
dimens_hidden=[400]
dimens_sent_encoder = [[32,64,128]]
batch_sizes=[5]
chunk_size = 5#
validate_after = 30
epochs=5
else:
lrs = [0.0002]
dimens_hidden=[800]
dimens_sent_encoder = [[64,128,256]]
batch_sizes=[32]
chunk_size = 32*400
validate_after = 500
epochs=10
snli_train = mydataloader.get_dataset_chunks(PATH_TRAIN_DATA, embedding_holder, chunk_size=chunk_size, mark_as='[train]')
snli_dev = mydataloader.get_dataset_chunks(PATH_DEV_DATA, embedding_holder, chunk_size=chunk_size, mark_as='[dev]')
#model, epochs, dev_acc, train_acc = train_model(classifier, snli_train, snli_dev,
# embedding_holder.padding(),
# F.cross_entropy, lr, epochs=50, batch_size=5, validate_after=5)
#print('best after ', epochs, ' acc:', dev_acc, train_acc)
#lrs = [0.00005,0.00002]
#dimens_hidden=[800,1600]
#dimens_sent_encoder = [[64,128,256], [128,256,512]]
#batch_sizes=[16,32]
train.search_best_model(snli_train, snli_dev, embedding_holder, lrs, dimens_hidden, dimens_sent_encoder, batch_sizes, epochs=epochs, validate_after=validate_after)