|
| 1 | +# Copyright (c) MONAI Consortium |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +# Unless required by applicable law or agreed to in writing, software |
| 7 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 8 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 9 | +# See the License for the specific language governing permissions and |
| 10 | +# limitations under the License. |
| 11 | + |
| 12 | +from __future__ import annotations |
| 13 | + |
| 14 | +import unittest |
| 15 | + |
| 16 | +import numpy as np |
| 17 | +import torch |
| 18 | +from parameterized import parameterized |
| 19 | + |
| 20 | +from monai.losses import BarlowTwinsLoss |
| 21 | + |
| 22 | +TEST_CASES = [ |
| 23 | + [ # shape: (2, 4), (2, 4) |
| 24 | + {"lambd": 5e-3}, |
| 25 | + { |
| 26 | + "input": torch.tensor([[1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0]]), |
| 27 | + "target": torch.tensor([[1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0]]), |
| 28 | + }, |
| 29 | + 4.0, |
| 30 | + ], |
| 31 | + [ # shape: (2, 4), (2, 4) |
| 32 | + {"lambd": 5e-3}, |
| 33 | + { |
| 34 | + "input": torch.tensor([[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]]), |
| 35 | + "target": torch.tensor([[1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0]]), |
| 36 | + }, |
| 37 | + 4.0, |
| 38 | + ], |
| 39 | + [ # shape: (2, 4), (2, 4) |
| 40 | + {"lambd": 5e-3}, |
| 41 | + { |
| 42 | + "input": torch.tensor([[1.0, 0.0, 1.0, 1.0], [0.0, 1.0, 1.0, 0.0]]), |
| 43 | + "target": torch.tensor([[1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 0.0, 1.0]]), |
| 44 | + }, |
| 45 | + 5.2562, |
| 46 | + ], |
| 47 | + [ # shape: (2, 4), (2, 4) |
| 48 | + {"lambd": 5e-4}, |
| 49 | + { |
| 50 | + "input": torch.tensor([[2.0, 3.0, 1.0, 2.0], [0.0, 1.0, 2.0, 5.0]]), |
| 51 | + "target": torch.tensor([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0]]), |
| 52 | + }, |
| 53 | + 5.0015, |
| 54 | + ], |
| 55 | + [ # shape: (4, 4), (4, 4) |
| 56 | + {"lambd": 5e-3}, |
| 57 | + { |
| 58 | + "input": torch.tensor( |
| 59 | + [[1.0, 2.0, 1.0, 1.0], [3.0, 1.0, 1.0, 2.0], [1.0, 1.0, 1.0, 1.0], [2.0, 1.0, 1.0, 0.0]] |
| 60 | + ), |
| 61 | + "target": torch.tensor( |
| 62 | + [ |
| 63 | + [0.0, 1.0, -1.0, 0.0], |
| 64 | + [1 / 3, 0.0, -2 / 3, 1 / 3], |
| 65 | + [-2 / 3, -1.0, 7 / 3, 1 / 3], |
| 66 | + [1 / 3, 0.0, 1 / 3, -2 / 3], |
| 67 | + ] |
| 68 | + ), |
| 69 | + }, |
| 70 | + 1.4736, |
| 71 | + ], |
| 72 | +] |
| 73 | + |
| 74 | + |
| 75 | +class TestBarlowTwinsLoss(unittest.TestCase): |
| 76 | + |
| 77 | + @parameterized.expand(TEST_CASES) |
| 78 | + def test_result(self, input_param, input_data, expected_val): |
| 79 | + barlowtwinsloss = BarlowTwinsLoss(**input_param) |
| 80 | + result = barlowtwinsloss(**input_data) |
| 81 | + np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, atol=1e-4, rtol=1e-4) |
| 82 | + |
| 83 | + def test_ill_shape(self): |
| 84 | + loss = BarlowTwinsLoss(lambd=5e-3) |
| 85 | + with self.assertRaises(ValueError): |
| 86 | + loss(torch.ones((1, 2, 3)), torch.ones((1, 1, 2, 3))) |
| 87 | + |
| 88 | + def test_ill_batch_size(self): |
| 89 | + loss = BarlowTwinsLoss(lambd=5e-3) |
| 90 | + with self.assertRaises(ValueError): |
| 91 | + loss(torch.ones((1, 2)), torch.ones((1, 2))) |
| 92 | + |
| 93 | + def test_with_cuda(self): |
| 94 | + loss = BarlowTwinsLoss(lambd=5e-3) |
| 95 | + i = torch.ones((2, 10)) |
| 96 | + j = torch.ones((2, 10)) |
| 97 | + if torch.cuda.is_available(): |
| 98 | + i = i.cuda() |
| 99 | + j = j.cuda() |
| 100 | + output = loss(i, j) |
| 101 | + np.testing.assert_allclose(output.detach().cpu().numpy(), 10.0, atol=1e-4, rtol=1e-4) |
| 102 | + |
| 103 | + def check_warning_raised(self): |
| 104 | + with self.assertWarns(Warning): |
| 105 | + BarlowTwinsLoss(lambd=5e-3, batch_size=1) |
| 106 | + |
| 107 | + |
| 108 | +if __name__ == "__main__": |
| 109 | + unittest.main() |
0 commit comments