-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathbuiltin.go
674 lines (601 loc) · 17 KB
/
builtin.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
package validating
import (
"fmt"
"regexp"
"strconv"
"unicode/utf8"
"golang.org/x/exp/constraints"
)
// Func is an adapter to allow the use of ordinary functions as
// validators. If f is a function with the appropriate signature,
// Func(f) is a Validator that calls f.
type Func func(field *Field) Errors
// Validate calls f(field).
func (f Func) Validate(field *Field) Errors {
return f(field)
}
// Schema is a field mapping, which defines
// the corresponding validator for each field.
type Schema map[*Field]Validator
// Validate validates fields per the given according to the schema.
func (s Schema) Validate(field *Field) (errs Errors) {
return validateSchema(s, field, func(name string) string { return name })
}
// Value is a shortcut function used to create a schema for a simple value.
func Value(value any, validator Validator) Schema {
return Schema{
F("", value): validator,
}
}
// Nested is a composite validator factory used to create a validator, which will
// delegate the actual validation to the validator returned by f.
func Nested[T any](f func(T) Validator) Validator {
return Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Nested", field, want)
}
return f(v).Validate(field)
})
}
// EachMap is a composite validator factory used to create a validator, which will
// apply the given validator to each element (i.e. the map value) of the map field.
//
// Usually, for simplicity, it's recommended to use EachMap. If you have more
// complex validation rules for map elements, such as different validation for
// each value or validation specific to keys, then you should use Map.
func EachMap[T map[K]V, K comparable, V any](validator Validator) Validator {
return Func(func(field *Field) (errs Errors) {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("EachMap", field, want)
}
for k := range v {
s := toSchema(v[k], validator)
err := validateSchema(s, field, func(name string) string {
return name + fmt.Sprintf("[%v]", k)
})
if err != nil {
errs.Append(err...)
}
}
return
})
}
// EachSlice is a composite validator factory used to create a validator, which will
// apply the given validator to each element of the slice field.
//
// Usually, for simplicity, it's recommended to use EachSlice. If you have more
// complex validation rules for slice elements, such as different validation for
// each element, then you should use Slice.
func EachSlice[T ~[]E, E any](validator Validator) Validator {
return Func(func(field *Field) (errs Errors) {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("EachSlice", field, want)
}
for i := range v {
s := toSchema(v[i], validator)
err := validateSchema(s, field, func(name string) string {
return name + "[" + strconv.Itoa(i) + "]"
})
if err != nil {
errs.Append(err...)
}
}
return
})
}
// Map is a composite validator factory used to create a validator, which will
// do the validation per the schemas associated with a map.
func Map[T map[K]V, K comparable, V any](f func(T) map[K]Validator) Validator {
return Func(func(field *Field) (errs Errors) {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Map", field, want)
}
validators := f(v)
for k, validator := range validators {
s := toSchema(v[k], validator)
err := validateSchema(s, field, func(name string) string {
return name + fmt.Sprintf("[%v]", k)
})
if err != nil {
errs.Append(err...)
}
}
return
})
}
// Slice is a composite validator factory used to create a validator, which will
// do the validation per the schemas associated with a slice.
func Slice[T ~[]E, E any](f func(T) []Validator) Validator {
return Func(func(field *Field) (errs Errors) {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Slice", field, want)
}
validators := f(v)
for i, validator := range validators {
s := toSchema(v[i], validator)
err := validateSchema(s, field, func(name string) string {
return name + "[" + strconv.Itoa(i) + "]"
})
if err != nil {
errs.Append(err...)
}
}
return
})
}
// Array is an alias of Slice.
func Array[T ~[]E, E any](f func(T) []Validator) Validator {
return Slice[T](f)
}
// MessageValidator is a validator that allows users to customize the INVALID
// error message by calling Msg().
type MessageValidator struct {
Message string
Validator Validator
}
// Msg sets the INVALID error message.
func (mv *MessageValidator) Msg(msg string) *MessageValidator {
if msg != "" {
mv.Message = msg
}
return mv
}
// Validate delegates the actual validation to its inner validator.
func (mv *MessageValidator) Validate(field *Field) Errors {
return mv.Validator.Validate(field)
}
// All is a composite validator factory used to create a validator, which will
// succeed only when all sub-validators succeed.
func All(validators ...Validator) Validator {
return Func(func(field *Field) Errors {
for _, v := range validators {
if errs := v.Validate(field); errs != nil {
return errs
}
}
return nil
})
}
// And is an alias of All.
var And = All
// AnyValidator is a validator that allows users to change the returned errors
// by calling LastError().
type AnyValidator struct {
returnLastError bool // Whether to return the last error if all validators fail.
validators []Validator
}
// Any is a composite validator factory used to create a validator, which will
// succeed as long as any sub-validator succeeds.
func Any(validators ...Validator) *AnyValidator {
return &AnyValidator{validators: validators}
}
// LastError makes AnyValidator return the error from the last validator
// if all inner validators fail.
func (av *AnyValidator) LastError() *AnyValidator {
av.returnLastError = true
return av
}
// Validate delegates the actual validation to its inner validators.
func (av *AnyValidator) Validate(field *Field) Errors {
var errs Errors
var lastErr Errors
for _, v := range av.validators {
lastErr = v.Validate(field)
if lastErr == nil {
return nil
}
errs.Append(lastErr...)
}
if av.returnLastError {
return lastErr
}
return errs
}
// Or is an alias of Any.
var Or = Any
// Not is a composite validator factory used to create a validator, which will
// succeed when the given validator fails.
func Not(validator Validator) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "is invalid",
Validator: Func(func(field *Field) Errors {
errs := validator.Validate(field)
if len(errs) == 0 {
return NewInvalidErrors(field, mv.Message)
}
var newErrs Errors
for _, err := range errs {
// Unsupported errors should be retained.
if err.Kind() == ErrUnsupported {
newErrs.Append(err)
}
}
return newErrs
}),
}
return
}
// Is is a leaf validator factory used to create a validator, which will
// succeed when the predicate function f returns true for the field's value.
func Is[T any](f func(T) bool) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "is invalid",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Is", field, want)
}
if !f(v) {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// Nonzero is a leaf validator factory used to create a validator, which will
// succeed when the field's value is nonzero.
func Nonzero[T comparable]() (mv *MessageValidator) {
mv = &MessageValidator{
Message: "is zero valued",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Nonzero", field, want)
}
var zero T
if v == zero {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// Zero is a leaf validator factory used to create a validator, which will
// succeed when the field's value is zero.
func Zero[T comparable]() (mv *MessageValidator) {
mv = &MessageValidator{
Message: "is nonzero",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Zero", field, want)
}
var zero T
if v != zero {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// ZeroOr is a composite validator factory used to create a validator, which will
// succeed if the field's value is zero, or if the given validator succeeds.
//
// ZeroOr will return the error from the given validator if it fails.
func ZeroOr[T comparable](validator Validator) Validator {
return Any(Zero[T](), validator).LastError()
}
// LenString is a leaf validator factory used to create a validator, which will
// succeed when the length of the string field is between min and max.
func LenString(min, max int) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "has an invalid length",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(string)
if !ok {
return NewUnsupportedErrors("LenString", field, "")
}
l := len(v)
if l < min || l > max {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// LenSlice is a leaf validator factory used to create a validator, which will
// succeed when the length of the slice field is between min and max.
func LenSlice[T ~[]E, E any](min, max int) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "has an invalid length",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("LenSlice", field, want)
}
l := len(v)
if l < min || l > max {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// RuneCount is a leaf validator factory used to create a validator, which will
// succeed when the number of runes in the field's value is between min and max.
func RuneCount(min, max int) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "the number of runes is not between the given range",
Validator: Func(func(field *Field) Errors {
valid := false
switch v := field.Value.(type) {
case string:
l := utf8.RuneCountInString(v)
valid = l >= min && l <= max
case []byte:
l := utf8.RuneCount(v)
valid = l >= min && l <= max
default:
return NewUnsupportedErrors("RuneCount", field, "", []byte(nil))
}
if !valid {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// Eq is a leaf validator factory used to create a validator, which will
// succeed when the field's value equals the given value.
func Eq[T comparable](value T) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "does not equal the given value",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Eq", field, want)
}
if v != value {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// Ne is a leaf validator factory used to create a validator, which will
// succeed when the field's value does not equal the given value.
func Ne[T comparable](value T) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "equals the given value",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Ne", field, want)
}
if v == value {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// Gt is a leaf validator factory used to create a validator, which will
// succeed when the field's value is greater than the given value.
func Gt[T constraints.Ordered](value T) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "is lower than or equal to the given value",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Gt", field, want)
}
if v <= value {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// Gte is a leaf validator factory used to create a validator, which will
// succeed when the field's value is greater than or equal to the given value.
func Gte[T constraints.Ordered](value T) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "is lower than the given value",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Gte", field, want)
}
if v < value {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// Lt is a leaf validator factory used to create a validator, which will
// succeed when the field's value is lower than the given value.
func Lt[T constraints.Ordered](value T) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "is greater than or equal to the given value",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Lt", field, want)
}
if v >= value {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// Lte is a leaf validator factory used to create a validator, which will
// succeed when the field's value is lower than or equal to the given value.
func Lte[T constraints.Ordered](value T) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "is greater than the given value",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Lte", field, want)
}
if v > value {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// Range is a leaf validator factory used to create a validator, which will
// succeed when the field's value is between min and max.
func Range[T constraints.Ordered](min, max T) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "is not between the given range",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Range", field, want)
}
if v < min || v > max {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// In is a leaf validator factory used to create a validator, which will
// succeed when the field's value is equal to one of the given values.
func In[T comparable](values ...T) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "is not one of the given values",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("In", field, want)
}
valid := false
for _, value := range values {
if v == value {
valid = true
break
}
}
if !valid {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// Nin is a leaf validator factory used to create a validator, which will
// succeed when the field's value is not equal to any of the given values.
func Nin[T comparable](values ...T) (mv *MessageValidator) {
mv = &MessageValidator{
Message: "is one of the given values",
Validator: Func(func(field *Field) Errors {
v, ok := field.Value.(T)
if !ok {
var want T
return NewUnsupportedErrors("Nin", field, want)
}
valid := true
for _, value := range values {
if v == value {
valid = false
break
}
}
if !valid {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// Match is a leaf validator factory used to create a validator, which will
// succeed when the field's value matches the given pattern (of type string
// or *regexp.Regexp).
func Match(pattern any) (mv *MessageValidator) {
var re *regexp.Regexp
switch v := pattern.(type) {
case string:
re = regexp.MustCompile(v)
case *regexp.Regexp:
re = v
default:
panic(fmt.Sprintf("validating: pattern must be of type string or *regexp.Regexp, got type %T", v))
}
mv = &MessageValidator{
Message: "does not match the given regular expression",
Validator: Func(func(field *Field) Errors {
valid := false
switch v := field.Value.(type) {
case string:
valid = re.MatchString(v)
case []byte:
valid = re.Match(v)
default:
return NewUnsupportedErrors("Match", field, "", []byte(nil))
}
if !valid {
return NewInvalidErrors(field, mv.Message)
}
return nil
}),
}
return
}
// toSchema converts the given validator to a Schema if it's not already.
func toSchema(value any, validator Validator) Schema {
s, ok := validator.(Schema)
if !ok {
s = Value(value, validator)
}
return s
}
// validateSchema do the validation per the given schema, which is associated
// with the given field.
func validateSchema(schema Schema, field *Field, prefixFunc func(string) string) (errs Errors) {
prefix := prefixFunc(field.Name)
for f, v := range schema {
if prefix != "" {
name := prefix
if f.Name != "" {
name = name + "." + f.Name
}
f = F(name, f.Value)
}
if err := v.Validate(f); err != nil {
errs.Append(err...)
}
}
return
}