-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSIP.py
92 lines (75 loc) · 2.65 KB
/
SIP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy as np
# loop over eval_freq to compute a periodogram
def SIP(x, y, basis, fs):
"""
# `K2pgram`
Calls eval_freq on x and y for each frequency in fs.
fs is frequency, *not* angular freq.
Returns the sum of squared amplitudes and the signal to noise.
"""
# construct arrays
AT = np.concatenate((basis, np.ones((3, len(y)))), axis=0)
ATA = np.dot(AT, AT.T)
amps2 = np.zeros_like(fs)
s2n = np.zeros_like(fs)
for i, f in enumerate(fs):
amps2[i], s2n[i], w = eval_freq(x, y, f, AT, ATA)
return s2n, amps2, w
# calculate periodogram by just updating sin and cos parts of the matrices
def eval_freq(x, y, f, AT, ATA, compute_trends=False):
"""
# `eval_freq`
Computes the sum of squared amplitudes for a sine and cosine function
with frequency, f.
Linear least squares fit to the data.
"""
arg = 2*np.pi*f*x
AT[-2, :] = np.sin(arg)
AT[-1, :] = np.cos(arg)
# AT.shape = (153, nt)
# shape: (151, nt) * (nt, 2) -> (151, 2)
v = np.dot(AT[:-2, :], AT[-2:, :].T)
ATA[:-2, -2:] = v
ATA[-2:, :-2] = v.T
# AT[-2:, :].shape = (2, nt)
# (2, nt), (nt, 2)
ATA[-2:, -2:] = np.dot(AT[-2:, :], AT[-2:, :].T)
w = np.linalg.solve(ATA, np.dot(AT, y))
S = np.linalg.inv(ATA)[-2:, -2:]
s2n = np.dot(w[-2:], np.linalg.solve(S, w[-2:]))
if compute_trends:
trends = np.dot(w[:-2], AT[:-2])
return np.sum(w[-2:]**2), s2n, trends
return s2n, np.sum(w[-2:]**2), w
# compute trends at a certain frequency.
def eval_1_freq(x, y, f, compute_trends=True):
"""
# `eval_1_freq`
Computes the sum of squared amplitudes for a sine and cosine function
with frequency, f.
Doesn't use precomputed matrices so is slow compared to eval_freq.
This version is just for computing conditional light curves.
It will provide the same output as eval_freq if you give it the
pre-constructed matrices.
"""
# construct arrays
AT = np.concatenate((basis, np.ones((3, len(y)))), axis=0)
ATA = np.dot(AT, AT.T)
arg = 2*np.pi*f*x
AT[-2, :] = np.sin(arg)
AT[-1, :] = np.cos(arg)
# AT.shape = (153, nt)
# shape: (151, nt) * (nt, 2) -> (151, 2)
v = np.dot(AT[:-2, :], AT[-2:, :].T)
ATA[:-2, -2:] = v
ATA[-2:, :-2] = v.T
# AT[-2:, :].shape = (2, nt)
# (2, nt), (nt, 2)
ATA[-2:, -2:] = np.dot(AT[-2:, :], AT[-2:, :].T)
w = np.linalg.solve(ATA, np.dot(AT, y))
S = np.linalg.inv(ATA)[-2:, -2:]
s2n = np.dot(w[-2:], np.linalg.solve(S, w[-2:]))
if compute_trends:
trends = np.dot(w[:-2], AT[:-2])
return np.sum(w[-2:]**2), s2n, trends
return s2n, np.sum(w[-2:]**2), w