-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_products.c
578 lines (518 loc) · 20.5 KB
/
calculate_products.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/*
SLIDEM Processor: calculate_products.c
Copyright (C) 2024 Johnathan K Burchill
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "calculate_products.h"
#include <stdint.h>
#include <stdbool.h>
#include "main.h"
#include "slidem_settings.h"
#include "slidem_flags.h"
#include "modified_oml.h"
#include "ioncomposition.h"
#include <gsl/gsl_math.h>
void calculateProducts(const char satellite, uint8_t **hmDataBuffers, double *fpCurrent, double *vn, double *ve, double *vc, double *dipLatitude, double *faceplateVoltage, double f107Adj, int yearDay, double *ionEffectiveMass, double *ionDensity, double *ionDriftRaw, double *ionDrift, double *ionEffectiveMassError, double *ionDensityError, double *ionDriftError, double *fpAreaOML, double *rProbeOML, double *electronTemperature, double *spacecraftPotential, uint32_t *electronTemperatureSource, uint32_t *spacecraftPotentialSource, double *ionEffectiveMassTBT, uint32_t *mieffFlags, uint32_t *viFlags, uint32_t *niFlags, uint16_t *iterationCount, long nHmRecs, probeParams sphericalProbeParams, long *numberOfSlidemEstimates)
{
double fpArea = 0;
double rProbe = 0;
double dipLat;
double mieff;
double mieffmodel;
double vions; // In reference frame moving with satellite
double vionsram; // From satellite motion
double alongtrackiondrift;
double ni; // Ion density
double di; // Ion admittance (inferred from L1b ion density)
double ifp; // Measured faceplate current
double te; // Electron temperature
double vs; // Satellite potential
double mieffError = MISSING_ERROR_ESTIMATE_VALUE;
double vionsError = MISSING_ERROR_ESTIMATE_VALUE;
double niError = MISSING_ERROR_ESTIMATE_VALUE;
uint32_t teSource = 0;
uint32_t vsSource = 0;
uint32_t vsFlag = 0;
uint32_t mieffFlag = 0;
uint32_t viFlag = 0;
uint32_t niFlag = 0;
long slidemEstimates = 0;
int iterations = 0;
for (long hmTimeIndex = 0; hmTimeIndex < nHmRecs; hmTimeIndex++)
{
dipLat = dipLatitude[hmTimeIndex];
if (MIEFF_FROM_TBT2015_MODEL)
{
// Truhlik et al. (2015) Towards better description of solar activity variation in the
// International Reference Ionosphere topside ion composition model, Advances in Space
// Research, 55, 8, 2099--2105.
mieffmodel = ionEffectiveMassIriTBT(HEIGHT()/1000., dipLat, MLAT(), MLT(), f107Adj, yearDay);
}
else
{
mieffmodel = 16.0;
}
mieff = mieffmodel; // seed for effective mass as low latitude, baseline for high latitude ion drift estimate
mieffError = 0.0;
mieffFlag = 0;
// Magnitude of satellite velocity
vionsram = sqrt(vn[hmTimeIndex]*vn[hmTimeIndex] + ve[hmTimeIndex]*ve[hmTimeIndex] + vc[hmTimeIndex]*vc[hmTimeIndex]);
vions = vionsram;
vionsError = 0.0;
// Set this flag bit, assuming post-processing offset corrections are not done.
// Will be unset in post_process_ion_drift.c if an offset model could be estimated.
viFlag = SLIDEM_FLAG_POST_PROCESSING_ERROR;
ni = NI() * 1e6;
niError = 0.0;
niFlag = 0;
di = ni / (16.0 * SLIDEM_MAMU) / vionsram * (2.0 * M_PI * SLIDEM_RP * SLIDEM_RP * SLIDEM_QE * SLIDEM_QE); // A/V
ifp = -fpCurrent[hmTimeIndex] * 1e-9; // A
// Get Te and Vs
getTeVs(satellite, hmDataBuffers, hmTimeIndex, &te, &teSource, &vs, &vsSource);
electronTemperature[hmTimeIndex] = te;
spacecraftPotential[hmTimeIndex] = vs;
electronTemperatureSource[hmTimeIndex] = teSource;
spacecraftPotentialSource[hmTimeIndex] = vsSource;
// Process sample
if(isfinite(ifp))
{
iterations = iterateEquations(&ni, ni, &vions, &mieff, &viFlag, &mieffFlag, &niFlag, &fpArea, &rProbe, te, vs, faceplateVoltage[hmTimeIndex], sphericalProbeParams, ifp, di, vionsram, mieffmodel, QDLAT(), false, satellite);
if (fabs(QDLAT()) > SLIDEM_QDLAT_CUTOFF)
alongtrackiondrift = vionsram - vions; // positive in direction of satellite velocity vector
else
alongtrackiondrift = MISSING_VI_VALUE;
updateFlags(iterations, &mieff, &mieffError, &alongtrackiondrift, &vionsError, &ni, &niError, &fpArea, &rProbe, te, vs, teSource, vsSource, vionsram, dipLat, vn, ve, vc, &mieffFlag, &viFlag, &niFlag, &slidemEstimates, hmDataBuffers, hmTimeIndex);
}
else
{
// ifp is NAN means there were no IFP measurements close enough to interpolate for this time
mieff = MISSING_MIEFF_VALUE;
mieffError = MISSING_ERROR_ESTIMATE_VALUE;
mieffFlag |= SLIDEM_FLAG_NO_FACEPLATE_CURRENT;
mieffmodel = MISSING_MIEFF_VALUE;
alongtrackiondrift = MISSING_VI_VALUE;
vionsError = MISSING_ERROR_ESTIMATE_VALUE;
viFlag |= SLIDEM_FLAG_NO_FACEPLATE_CURRENT;
ni = MISSING_NI_VALUE * 1e6;
niError = MISSING_ERROR_ESTIMATE_VALUE;
niFlag |= SLIDEM_FLAG_NO_FACEPLATE_CURRENT;
fpArea = MISSING_FPAREA_VALUE;
rProbe = MISSING_RPROBE_VALUE;
iterations = 0;
}
// Return estimate for all latitudes, though flagged invalid at high latitude
ionEffectiveMass[hmTimeIndex] = mieff; // a.m.u.
ionEffectiveMassError[hmTimeIndex] = mieffError;
ionEffectiveMassTBT[hmTimeIndex] = mieffmodel;
mieffFlags[hmTimeIndex] = mieffFlag;
ionDrift[hmTimeIndex] = alongtrackiondrift; // positive along satellite velocity vector (approximate direction)
ionDriftError[hmTimeIndex] = vionsError;
viFlags[hmTimeIndex] = viFlag;
ionDriftRaw[hmTimeIndex] = alongtrackiondrift;
ionDensity[hmTimeIndex] = ni / 1e6; // /cm^3
ionDensityError[hmTimeIndex] = niError;
niFlags[hmTimeIndex] = niFlag;
fpAreaOML[hmTimeIndex] = fpArea;
rProbeOML[hmTimeIndex] = rProbe;
iterationCount[hmTimeIndex] = iterations;
}
*numberOfSlidemEstimates = slidemEstimates;
return;
}
void getTeVs(const char satellite, uint8_t **hmDataBuffers, long hmTimeIndex, double *te, uint32_t *teSource, double *vs, uint32_t *vsSource)
{
#if BLENDED_TE
*te = TELEC();
*teSource = LP_BLENDED_PROBE;
#else
double tetmp = MISSING_TE_VALUE;
uint32_t teSourcetmp = LP_NO_PROBE;
if ((LPFLAG() & LP_TE_HGN_MASK) == 0 && (LPFLAG() & 0b11) != 0)
{
// Lomidze et al. 2021, Estimation of Ion Temperature Along the Swarm Satellite Orbits
// Earth and Space Science e2021IEA001925
switch(satellite)
{
case 'A':
tetmp = 1.2844 * TEHGN() - 1083.0;
break;
case 'B':
tetmp = 1.1626 * TEHGN() - 827.0;
break;
case 'C':
tetmp = 1.2153 * TEHGN() - 916.0;
break;
default:
tetmp = MISSING_TE_VALUE;
break;
}
teSourcetmp = LP_HGN_PROBE;
}
else if ((LPFLAG() & LP_TE_LGN_MASK) == 0 && (LPFLAG() & 0b11) != 3)
{
switch(satellite)
{
case 'A':
tetmp = 1.0 * TELGN() - 723.0;
break;
case 'B':
tetmp = 1.0 * TELGN() - 698.0;
break;
case 'C':
tetmp = 1.0 * TELGN() - 682.0;
break;
default:
tetmp = MISSING_TE_VALUE;
break;
}
teSourcetmp = LP_LGN_PROBE;
}
else
{
tetmp = MISSING_TE_VALUE;
teSourcetmp = LP_NO_PROBE;
}
*teSource = teSourcetmp;
*te = tetmp;
#endif // BLENDED_TE
#if BLENDED_VS
*vs = USC();
*vsSource = LP_BLENDED_PROBE;
#else
// Get VS
if ((LPFLAG() & LP_VS_HGN_MASK) == 0 && (LPFLAG() & 0b11) != 0)
{
*vs = VSHGN();
*vsSource = LP_HGN_PROBE;
}
else if ((LPFLAG() & LP_VS_LGN_MASK) == 0 && (LPFLAG() & 0b11) != 3)
{
*vs = VSLGN();
*vsSource = LP_LGN_PROBE;
}
else
{
*vs = MISSING_VS_VALUE;
*vsSource = LP_NO_PROBE;
}
#endif
return;
}
int iterateEquations(double *niIO, double nil1b, double *vionsIO, double *mieffIO, uint32_t *viFlagIO, uint32_t *mieffFlagIO, uint32_t *niFlagIO, double *fpAreaIO, double *rProbeIO, double te, double vs, double faceplateVoltage, probeParams sphericalProbeParams, double ifp, double di, double vionsram, double mieffmodel, double qdlat, bool postProcessing, const char satellite)
{
int iterations = 0;
double ni = *niIO;
double vions = *vionsIO;
double mieff = *mieffIO;
uint32_t viFlag = *viFlagIO;
uint32_t mieffFlag = *mieffFlagIO;
double vionslast = -10000000.;
double miefflast = -10000000.;
double nilast = -10000000.;
double mikg = 0.0;
double mimodelkg = mieffmodel * SLIDEM_MAMU;
double fpArea = 0.0;
double rProbe = 0.0;
double aFpGeo = SLIDEM_WFP * SLIDEM_HFP;
// Reset reference values for for triggering out of the iteration
vionslast = vions;
miefflast = mieff;
mikg = mieff * SLIDEM_MAMU;
nilast = ni;
if (MODIFIED_OML_GEOMETRIES)
{
// revise estimates of probe effective geometries
fpArea = aFpGeo;
if (MODIFIED_OML_SPHERICAL_PROBE_CORRECTION)
rProbe = probeRadius(ni, te, vs, mieff, vions, sphericalProbeParams, satellite);
else
rProbe = SLIDEM_RP;
}
else
{
fpArea = aFpGeo;
rProbe = SLIDEM_RP;
}
// Try to estimate even if OML model is wrong (i.e., NAN from sqrt of negative numbers)
// but leave as nan on the last iteration
if (!isfinite(fpArea) && iterations < (SLIDEM_MAX_ITERATIONS - 1))
fpArea = aFpGeo;
if (!isfinite(rProbe) && iterations < (SLIDEM_MAX_ITERATIONS - 1))
rProbe = SLIDEM_RP;
// Estimate effective mass at all latitudes
if (!postProcessing)
mieff = (4.0 * M_PI * rProbe * rProbe * SLIDEM_QE * ifp) / (2.0 * fpArea * di * vionsram * vionsram) / SLIDEM_MAMU;
else
mieff = (4.0 * M_PI * rProbe * rProbe * SLIDEM_QE * ifp) / (2.0 * fpArea * di * vions * vions) / SLIDEM_MAMU;
if (!isfinite(mieff) && iterations < (SLIDEM_MAX_ITERATIONS - 1)) mieff = mieffmodel;
mikg = mieff * SLIDEM_MAMU;
// Ion drift at high latitude
if (fabs(qdlat) >= SLIDEM_QDLAT_CUTOFF)
{
if (!postProcessing)
{
vions = sqrt((4.0 * M_PI * rProbe * rProbe * SLIDEM_QE * ifp) / (2.0 * fpArea * di * mimodelkg));
if (!isfinite(vions) && iterations < (SLIDEM_MAX_ITERATIONS - 1))
vions = vionsram;
mieffFlag |= SLIDEM_FLAG_BEYOND_VALID_QDLATITUDE;
ni = sqrt(2.0 * ifp * di * mimodelkg / (fpArea * 4.0 * M_PI * rProbe * rProbe * SLIDEM_QE * SLIDEM_QE * SLIDEM_QE));
if (!isfinite(ni) && iterations < (SLIDEM_MAX_ITERATIONS - 1))
ni = ifp / (aFpGeo * SLIDEM_QE * vions);
if (!isfinite(ni) && iterations < (SLIDEM_MAX_ITERATIONS - 1))
ni = nil1b;
}
else
{
ni = sqrt(2.0 * ifp * di * mikg / (fpArea * 4.0 * M_PI * rProbe * rProbe * SLIDEM_QE * SLIDEM_QE * SLIDEM_QE));
if (!isfinite(ni) && iterations < (SLIDEM_MAX_ITERATIONS - 1))
ni = ifp / (aFpGeo * SLIDEM_QE * vions);
if (!isfinite(ni) && iterations < (SLIDEM_MAX_ITERATIONS - 1))
ni = nil1b;
}
}
else // effective mass estimates are intended for low latitude
{
viFlag |= SLIDEM_FLAG_BEYOND_VALID_QDLATITUDE;
ni = ifp / (fpArea * SLIDEM_QE * vions);
if (!isfinite(ni) && iterations < (SLIDEM_MAX_ITERATIONS - 1))
ni = ifp / (aFpGeo * SLIDEM_QE * vions);
// Check again, in case aFpGeo is not finite
if (!isfinite(ni) && iterations < (SLIDEM_MAX_ITERATIONS - 1))
ni = nil1b;
}
// TODO Calculate error estimates and flags
if (!postProcessing)
{
*vionsIO = vions;
*viFlagIO = viFlag;
}
*niIO = ni;
*mieffIO = mieff;
*mieffFlagIO = mieffFlag;
*fpAreaIO = fpArea;
*rProbeIO = rProbe;
return iterations;
}
void updateFlags(int iterations, double *mieffIO, double *mieffErrorIO, double *viIO, double *viErrorIO, double *niIO, double *niErrorIO, double *fpAreaIO, double *rProbeIO, double te, double vs, uint32_t teSource, uint32_t vsSource, double vionsram, double dipLat, double *vn, double *ve, double *vc, uint32_t *mieffFlagIO, uint32_t *viFlagIO, uint32_t *niFlagIO, long *slidemEstimatesIO, uint8_t **hmDataBuffers, long hmTimeIndex)
{
uint32_t mieffFlag = 0;
uint32_t viFlag = 0;
uint32_t niFlag = 0;
double mieff = 0;
double mieffError = 0;
double alongtrackiondrift = 0;
double vionsError = 0;
double ni = 0;
double niError = 0;
double fpArea = 0;
double rProbe = 0;
long slidemEstimates = 0;
if (mieffFlagIO != NULL)
mieffFlag = *mieffFlagIO;
if (viFlagIO != NULL)
viFlag = *viFlagIO;
if (niFlagIO != NULL)
niFlag = *niFlagIO;
if (mieffIO != NULL)
mieff = *mieffIO;
if (mieffErrorIO != NULL)
mieffError = *mieffErrorIO;
if (viIO != NULL)
alongtrackiondrift = *viIO;
if (viErrorIO != NULL)
vionsError = *viErrorIO;
if (niIO != NULL)
ni = *niIO;
if (niErrorIO != NULL)
niError = *niErrorIO;
if (fpAreaIO != NULL)
fpArea = *fpAreaIO;
if (rProbeIO != NULL)
rProbe = *rProbeIO;
if (slidemEstimatesIO != NULL)
slidemEstimates = *slidemEstimatesIO;
if (iterations >= SLIDEM_MAX_ITERATIONS)
{
mieffFlag |= SLIDEM_FLAG_ESTIMATE_DID_NOT_CONVERGE;
viFlag |= SLIDEM_FLAG_ESTIMATE_DID_NOT_CONVERGE;
niFlag |= SLIDEM_FLAG_ESTIMATE_DID_NOT_CONVERGE;
}
else
{
slidemEstimates++;
}
// Replace nans for CDF export
if (isfinite(mieff))
{
if (mieff > FLAGS_MAXIMUM_MIEFF)
mieffFlag |= SLIDEM_FLAG_ESTIMATE_TOO_LARGE;
else if (mieff < FLAGS_MINIMUM_MIEFF)
mieffFlag |= SLIDEM_FLAG_ESTIMATE_TOO_SMALL;
}
else
{
mieff = MISSING_MIEFF_VALUE;
mieffFlag |= SLIDEM_FLAG_PRODUCT_ESTIMATE_NOT_FINITE;
}
if (!isfinite(mieffError))
{
mieffError = MISSING_ERROR_ESTIMATE_VALUE;
mieffFlag |= SLIDEM_FLAG_UNCERTAINTY_ESTIMATE_NOT_FINITE;
}
if (isfinite(alongtrackiondrift))
{
if (fabs(alongtrackiondrift) > FLAGS_MAXIMUM_DRIFT_MAGNITUDE)
viFlag |= SLIDEM_FLAG_ESTIMATE_TOO_LARGE;
}
else
{
alongtrackiondrift = MISSING_VI_VALUE;
viFlag |= SLIDEM_FLAG_PRODUCT_ESTIMATE_NOT_FINITE;
}
if (!isfinite(vionsError))
{
vionsError = MISSING_ERROR_ESTIMATE_VALUE;
viFlag |= SLIDEM_FLAG_UNCERTAINTY_ESTIMATE_NOT_FINITE;
}
if (isfinite(ni))
{
if (ni > FLAGS_MAXIMUM_NI)
niFlag |= SLIDEM_FLAG_ESTIMATE_TOO_LARGE;
else if (ni < FLAGS_MINIMUM_NI)
niFlag |= SLIDEM_FLAG_ESTIMATE_TOO_SMALL;
}
else
{
ni = MISSING_NI_VALUE * 1e6;
niFlag |= SLIDEM_FLAG_PRODUCT_ESTIMATE_NOT_FINITE;
}
if (!isfinite(niError))
{
niError = MISSING_ERROR_ESTIMATE_VALUE;
niFlag |= SLIDEM_FLAG_UNCERTAINTY_ESTIMATE_NOT_FINITE;
}
if (isfinite(fpArea))
{
if (fpArea > FLAGS_MAXIMUM_FACEPLATE_AREA || fpArea < FLAGS_MINIMUM_FACEPLATE_AREA)
{
mieffFlag |= SLIDEM_FLAG_OML_FACEPLATE_AREA_CORRECTION_INVALID;
viFlag |= SLIDEM_FLAG_OML_FACEPLATE_AREA_CORRECTION_INVALID;
niFlag |= SLIDEM_FLAG_OML_FACEPLATE_AREA_CORRECTION_INVALID;
}
}
else
{
fpArea = MISSING_FPAREA_VALUE;
mieffFlag |= SLIDEM_FLAG_OML_FACEPLATE_AREA_CORRECTION_INVALID;
mieffFlag |= SLIDEM_FLAG_FACEPLATE_AREA_ESTIMATE_NOT_FINITE;
viFlag |= SLIDEM_FLAG_OML_FACEPLATE_AREA_CORRECTION_INVALID;
viFlag |= SLIDEM_FLAG_FACEPLATE_AREA_ESTIMATE_NOT_FINITE;
niFlag |= SLIDEM_FLAG_OML_FACEPLATE_AREA_CORRECTION_INVALID;
niFlag |= SLIDEM_FLAG_FACEPLATE_AREA_ESTIMATE_NOT_FINITE;
}
if (isfinite(rProbe))
{
if (rProbe > FLAGS_MAXIMUM_PROBE_RADIUS || rProbe < FLAGS_MINIMUM_PROBE_RADIUS)
{
mieffFlag |= SLIDEM_FLAG_OML_FACEPLATE_AREA_CORRECTION_INVALID;
viFlag |= SLIDEM_FLAG_OML_FACEPLATE_AREA_CORRECTION_INVALID;
niFlag |= SLIDEM_FLAG_OML_FACEPLATE_AREA_CORRECTION_INVALID;
}
}
else
{
rProbe = MISSING_RPROBE_VALUE;
mieffFlag |= SLIDEM_FLAG_OML_PROBE_RADIUS_CORRECTION_INVALID;
mieffFlag |= SLIDEM_FLAG_PROBE_RADIUS_ESTIMATE_NOT_FINITE;
viFlag |= SLIDEM_FLAG_OML_PROBE_RADIUS_CORRECTION_INVALID;
viFlag |= SLIDEM_FLAG_PROBE_RADIUS_ESTIMATE_NOT_FINITE;
niFlag |= SLIDEM_FLAG_OML_PROBE_RADIUS_CORRECTION_INVALID;
niFlag |= SLIDEM_FLAG_PROBE_RADIUS_ESTIMATE_NOT_FINITE;
}
// LP validity checks
// Potential difference between spherical probes too large?
if (fabs(VSHGN() - VSLGN()) > FLAGS_MAXIMUM_PROBE_POTENTIAL_DIFFERENCE)
{
mieffFlag |= SLIDEM_FLAG_LP_PROBE_POTENTIAL_DIFFERENCE_TOO_LARGE;
viFlag |= SLIDEM_FLAG_LP_PROBE_POTENTIAL_DIFFERENCE_TOO_LARGE;
niFlag |= SLIDEM_FLAG_LP_PROBE_POTENTIAL_DIFFERENCE_TOO_LARGE;
}
// Spacecraft potential too negative?
if (vs < FLAGS_MINIMUM_LP_SPACECRAFT_POTENTIAL)
{
mieffFlag |= SLIDEM_FLAG_SPACECRAFT_POTENTIAL_TOO_NEGATIVE;
mieffFlag |= SLIDEM_FLAG_LP_INPUTS_INVALID;
viFlag |= SLIDEM_FLAG_SPACECRAFT_POTENTIAL_TOO_NEGATIVE;
viFlag |= SLIDEM_FLAG_LP_INPUTS_INVALID;
niFlag |= SLIDEM_FLAG_SPACECRAFT_POTENTIAL_TOO_NEGATIVE;
niFlag |= SLIDEM_FLAG_LP_INPUTS_INVALID;
}
else if (vs > FLAGS_MAXIMUM_LP_SPACECRAFT_POTENTIAL)
{
mieffFlag |= SLIDEM_FLAG_SPACECRAFT_POTENTIAL_TOO_POSITIVE;
mieffFlag |= SLIDEM_FLAG_LP_INPUTS_INVALID;
viFlag |= SLIDEM_FLAG_SPACECRAFT_POTENTIAL_TOO_POSITIVE;
viFlag |= SLIDEM_FLAG_LP_INPUTS_INVALID;
niFlag |= SLIDEM_FLAG_SPACECRAFT_POTENTIAL_TOO_POSITIVE;
niFlag |= SLIDEM_FLAG_LP_INPUTS_INVALID;
}
// LP Probe issues?
if (te < FLAGS_MINIMUM_LP_TE || te > FLAGS_MAXIMUM_LP_TE || ni < FLAGS_MINIMUM_NI || ni > FLAGS_MAXIMUM_NI || teSource == LP_NO_PROBE || vsSource == LP_NO_PROBE)
{
mieffFlag |= SLIDEM_FLAG_LP_INPUTS_INVALID;
viFlag |= SLIDEM_FLAG_LP_INPUTS_INVALID;
niFlag |= SLIDEM_FLAG_LP_INPUTS_INVALID;
}
// Satellite velocity data available?
if (!isfinite(vionsram))
{
// overwrite VNEC and raise flags
vn[hmTimeIndex] = MISSING_VNEC_VALUE;
ve[hmTimeIndex] = MISSING_VNEC_VALUE;
vc[hmTimeIndex] = MISSING_VNEC_VALUE;
mieffFlag |= SLIDEM_FLAG_NO_SATELLITE_VELOCITY;
viFlag |= SLIDEM_FLAG_NO_SATELLITE_VELOCITY;
niFlag |= SLIDEM_FLAG_NO_SATELLITE_VELOCITY;
}
// DIP Latitude missing? Has to be due to a problem with input MAG data
if (dipLat == MISSING_DIPLAT_VALUE)
{
mieffFlag |= SLIDEM_FLAG_MAG_INPUT_INVALID;
viFlag |= SLIDEM_FLAG_MAG_INPUT_INVALID;
niFlag |= SLIDEM_FLAG_MAG_INPUT_INVALID;
}
if (mieffFlagIO != NULL)
*mieffFlagIO = mieffFlag;
if (viFlagIO != NULL)
*viFlagIO = viFlag;
if (niFlagIO != NULL)
*niFlagIO = niFlag;
if (mieffIO != NULL)
*mieffIO = mieff;
if (mieffErrorIO != NULL)
*mieffErrorIO = mieffError;
if (viIO != NULL)
*viIO = alongtrackiondrift;
if (viErrorIO != NULL)
*viErrorIO = vionsError;
if (niIO != NULL)
*niIO = ni;
if (niErrorIO != NULL)
*niErrorIO = niError;
if (fpAreaIO != NULL)
*fpAreaIO = fpArea;
if (rProbeIO != NULL)
*rProbeIO = rProbe;
if (slidemEstimatesIO != NULL)
*slidemEstimatesIO = slidemEstimates;
return;
}