-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinaryTree.h
228 lines (203 loc) · 4.77 KB
/
BinaryTree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#ifndef ALGORITHMS_BINARYTREE_H_
#define ALGORITHMS_BINARYTREE_H_
template <class N>
class node {
public:
node *left;
node *right;
node *parent;
N data;
};
template <class T>
class binaryTree {
public:
binaryTree<T>();
node<T> * getRoot() { return root; }
node<T> * search(T key);
void insert(T key);
void remove(T del);
void remove(node<T> leaf);
node<T> * minimum();
node<T> * next(node<T> * leaf);
node<T> * prev(node<T> * leaf);
void traversePreOrder(node<T> * leaf, void (cb)(node<T> *leaf));
void traverseInOrder(node<T> * leaf, void (cb)(node<T> *leaf));
void traversePostOrder(node<T> * leaf, void (cb)(node<T> *leaf));
private:
node<T> * root;
node<T> * r_search(T key, node<T> * leaf);
void r_insert(T key, node<T> * leaf);
node<T> * initNode(T key);
node<T> * r_minimum(node<T> *leaf);
};
template <class T>
binaryTree<T>::binaryTree() {
}
template <class T>
inline node<T> * binaryTree<T>::initNode(T key) {
node<T> *leaf = new node<T>();
leaf->data = key;
leaf->left = NULL;
leaf->right = NULL;
leaf->parent = NULL;
return leaf;
}
template <class T>
node<T> * binaryTree<T>::search(T key) {
if (root != NULL) {
return r_search(key, root);
}
else
{
return NULL;
}
}
template <class T>
node<T> * binaryTree<T>::r_search(T key, node<T> * leaf) {
if (leaf == NULL) {
return NULL;
}
if (leaf->data == key) {
return leaf;
}
else if (leaf->data < key) {
r_search(key, leaf->right);
}
else {
r_search(key, leaf->left);
}
}
template <class T>
void binaryTree<T>::insert(T key) {
if (root != NULL) {
r_insert(key, root);
}
else {
root = initNode(key);
}
}
template <class T>
void binaryTree<T>::r_insert(T key, node<T> *leaf) {
if (key > leaf->data) {
if (leaf->right == NULL) {
node<T> *newnode = initNode(key);
newnode->parent = leaf;
leaf->right = newnode;
}
else {
r_insert(key, leaf->right);
}
}
else {
if (leaf->left == NULL) {
node<T> *newnode = initNode(key);
newnode->parent = leaf;
leaf->left = newnode;
}
else {
r_insert(key, leaf->left);
}
}
}
template <class T>
void binaryTree<T>::remove(node<T> del) {
// no children
if (del->left == NULL && del->right == NULL) {
if (del->parent->key >= del->key) {
del->parent->left = NULL;
}
else {
del->parent->right = NULL;
}
}
// one child
else if (del->left == NULL && del->right != NULL) {
del->parent->right = del->right;
del->right->parent = del->parent;
}
else if (del->left != NULL && del->right == NULL) {
del->parent->left = del->left;
del->left->parent = del->parent;
}
// two children
else {
node temp = next(del);
if (temp != NULL) {
del->data = temp->data;
remove(temp);
}
}
delete del;
}
template <class T>
void binaryTree<T>::remove(T key) {
node<T> *del = search(key);
if (del != NULL) {
return remove(del);
}
}
template <class T>
node<T> * binaryTree<T>::minimum() {
if (root == NULL) {
return NULL;
}
else {
return r_minimum(root);
}
}
template <class T>
node<T> * binaryTree<T>::r_minimum(node<T> * leaf) {
if (leaf->left == NULL) {
return leaf;
}
else {
return r_minimum(leaf->left);
}
}
template <class T>
node<T> * binaryTree<T>::next(node<T> * leaf) {
if (leaf == NULL) {
return NULL;
}
if (leaf->right != NULL) {
return r_minimum(leaf->right);
}
else {
while (leaf->parent != NULL && leaf->parent->left != leaf) {
leaf = leaf->parent;
}
return leaf->parent;
}
}
template <class T>
node<T> * binaryTree<T>::prev(node<T> * leaf) {
// todo
}
template <class T>
void binaryTree<T>::traversePreOrder(node<T> * leaf, void (cb)(node<T> *leaf)) {
if (leaf == NULL) {
return;
}
cb(leaf);
traverseInOrder(leaf->left, cb);
traverseInOrder(leaf->right, cb);
}
template <class T>
void binaryTree<T>::traverseInOrder(node<T> * leaf, void (cb)(node<T> *leaf)) {
if (leaf == NULL) {
return;
}
traverseInOrder(leaf->left, cb);
cb(leaf);
traverseInOrder(leaf->right, cb);
}
template <class T>
void binaryTree<T>::traversePostOrder(node<T> * leaf, void (cb)(node<T> *leaf)) {
if (leaf == NULL) {
return;
}
traverseInOrder(leaf->left, cb);
traverseInOrder(leaf->right, cb);
cb(leaf);
}
#endif ALGORITHMS_BINARYTREE_H_