-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwk352.java
133 lines (117 loc) · 3.89 KB
/
wk352.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
package weekly;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.TreeMap;
import java.util.TreeSet;
public class wk352 {
//o(n)也可以,因为具有单一性
public int longestAlternatingSubarray(int[] nums, int threshold) {
int ans = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] % 2 != 0 || nums[i] > threshold) continue;
int max = 1;
for (int j = i + 1; j < nums.length; j++) {
if (nums[j] % 2 == nums[j - 1] % 2) {
break;
}
if (nums[j] > threshold) {
break;
}
max++;
}
ans = Math.max(ans, max);
}
return ans;
}
public static List<Integer> getPrimes(int n) {
boolean[] isComposite = new boolean[n + 1];
List<Integer> primes = new ArrayList<>();
for (int i = 2; i <= n; i++) {
if (!isComposite[i]) {
primes.add(i);
for (int j = i * 2; j >= 0 && j <= n; j += i) { // 标记该数的倍数为合数
isComposite[j] = true;
}
}
}
return primes;
}
static Set<Integer> set = new HashSet<>();
static {
for (Integer prime : getPrimes(1000001)) {
set.add(prime);
}
}
//先static求出所有质数
public List<List<Integer>> findPrimePairs(int n) {
List<List<Integer>> res = new ArrayList<>();
for (int i = 2; i <= n / 2; i++) {
if (set.contains(i) && set.contains(n - i)) {
res.add(Arrays.asList(i, n - i));
}
}
return res;
}
//滑动窗口,treemap存值方便找最大最小值
static public long continuousSubarrays(int[] nums) {
TreeMap<Integer, Integer> treeMap = new TreeMap<>();
int left = 0;
long ans = 0;
for (int i = 0; i < nums.length; i++) {
treeMap.put(nums[i], treeMap.getOrDefault(nums[i], 0) + 1);
while (Math.abs(treeMap.firstKey() - treeMap.lastKey()) > 2) {
Integer count = treeMap.get(nums[left]);
if (count == 1) {
treeMap.remove(nums[left]);
} else {
treeMap.put(nums[left], count - 1);
}
left++;
}
long c = (i - left + 1);
ans += c;
}
return ans;
}
public static void main(String[] args) {
continuousSubarrays(new int[]{5, 4, 2, 4});
}
// 枚举
public int sumImbalanceNumbers(int[] nums) {
int ans = 0;
for (int i = 0; i < nums.length; i++) {
int count = 0;
TreeSet<Integer> treeSet = new TreeSet<>();
treeSet.add(nums[i]);
for (int j = i + 1; j < nums.length; j++) {
if (treeSet.contains(nums[j])) {
ans += count;
continue;
}
Integer left = treeSet.lower(nums[j]);
Integer right = treeSet.higher(nums[j]);
if (left != null && right != null) {
if (nums[j] - left > 1 && right - nums[j] > 1) {
count++;
} else if (nums[j] - left <= 1 && right - nums[j] <= 1) {
count--;
}
} else if (left == null) {
if (right - nums[j] > 1) {
count++;
}
} else if (right == null) {
if (nums[j] - left > 1) {
count++;
}
}
treeSet.add(nums[j]);
ans += count;
}
}
return ans;
}
}