Skip to content

Commit ce67848

Browse files
committed
update readme.md
1 parent fa56700 commit ce67848

File tree

1 file changed

+9
-9
lines changed
  • 2022/FA22/intro-ai-series/workshop-3-reinforcement-learning

1 file changed

+9
-9
lines changed

2022/FA22/intro-ai-series/workshop-3-reinforcement-learning/README.md

+9-9
Original file line numberDiff line numberDiff line change
@@ -10,10 +10,10 @@
1010
Request new headers from you Director to fit your workshop!
1111
-->
1212

13-
![Intro to AI: Multi Agent Search](./figures/W2_Header_Light.png#gh-light-mode-only)
14-
![Intro to AI: Multi Agent Search](./figures/W2_Header_Dark.png#gh-dark-mode-only)
13+
![Intro to AI: Reinforcement Learning](./figures/W2_Header_Light.png#gh-light-mode-only)
14+
![Intro to AI: Reinforcement Learning](./figures/W2_Header_Dark.png#gh-dark-mode-only)
1515

16-
The official ACM AI **Intro to AI: Multi Agent Search Algorithms Workshop** repository. We demonstrate how to run various multi-agent search algorithms in a custom Pacman environment from Berkeley's [CS 188](https://inst.eecs.berkeley.edu/~cs188/fa22/projects/proj2/#welcome-to-multi-agent-pacman).
16+
The official ACM AI **Intro to AI: Reinforcement Learning Workshop** repository. We demonstrate how to run reinforcement learning algorithms in a custom Pacman environment from Berkeley's [CS 188](https://inst.eecs.berkeley.edu/~cs188/fa22/projects/proj3/).
1717

1818
<!--
1919
SECTION: Table of Contents
@@ -57,7 +57,7 @@ conda env create -f environment.yaml
5757
conda activate ai
5858
```
5959

60-
Workshop "Intro to AI: Multi Agent Search Algorithms" consists of 2 components:
60+
Workshop "Intro to AI: Reinforcement Learning" consists of 2 components:
6161
- [Notebook](<!-- Local Path to Notebook -->) with completed code and explanations.
6262
- [Summary Graphic](<!-- Local Path to Summary Graphic -->) to summarize key points of the workshop. (To be added after workshop)
6363

@@ -67,17 +67,17 @@ Please refer to [CS 188](https://inst.eecs.berkeley.edu/~cs188/fa22/projects/pro
6767

6868
Try running
6969
```
70-
python pacman.py
70+
python gridworld.py -m
7171
```
72-
to play a game of pacman and get a grasp on the environment.
72+
to play in the gridworld environment manually and get a grasp on the environment.
7373

7474
Algorithms:
7575

76-
Q2 - Minimax
76+
Q2 - Value Iteration
7777

78-
Q3 - Alpha-Beta Pruning
78+
Q3 - Q-Learning and Epsilon-Greedy
7979

80-
Q4 - Expectimax
80+
Q4 - Deep Q-Learning
8181

8282
<!--
8383
Note: The above list will depend on your specific workshop.

0 commit comments

Comments
 (0)