-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_search.py
67 lines (54 loc) · 1.82 KB
/
binary_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import time
from random import randint
# Iterative implementation of Binary Search.
def binarySearch(array, key):
low = 0
high = len(array) - 1
while (low <= high):
mid = low + (high - low) // 2
if (key < array[mid]):
high = mid - 1
elif (key > array[mid]):
low = mid + 1
else:
return mid
return -1
# Experiments to check time complexity.
if __name__ == "__main__":
a = list(range(100000))
start_time = time.time()
for i in range(50000):
binarySearch(a, randint(0, 99999))
print("Time taken -> " + str(time.time() - start_time))
# The following will take just slightly more time. (logarithmic)
a = list(range(200000))
start_time = time.time()
for i in range(50000):
binarySearch(a, randint(0, 199999))
print("Time taken -> " + str(time.time() - start_time))
# Recursive implementation of Binary Search.
def binarySearchRecur(array, low, high, key):
if low > high:
return -1
mid = low + (high - low) // 2
if (key < array[mid]):
high = mid - 1
return binarySearchRecur(array, low, high, key)
elif (key > array[mid]):
low = mid + 1
return binarySearchRecur(array, low, high, key)
else:
return mid
# Experiments to check time complexity.
if __name__ == "__main__":
a = list(range(100000))
start_time = time.time()
for i in range(50000):
binarySearchRecur(a, 0, len(a) - 1, randint(0, 99999))
print("Time taken -> " + str(time.time() - start_time))
# The following will take just slightly more time. (logarithmic)
a = list(range(200000))
start_time = time.time()
for i in range(50000):
binarySearchRecur(a, 0, len(a) - 1, randint(0, 199999))
print("Time taken -> " + str(time.time() - start_time))