-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_search_tree.py
208 lines (158 loc) · 5.59 KB
/
binary_search_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
###########################
### Binary Search Tree. ###
###########################
class BinarySearchTree:
# A Binary Search Tree is a reference to a root Node.
root = None
class _Node:
left, right = None, None
def __init__(self, key, value):
self.key = key
self.value = value
self.count = 1
# Return the size of the tree.
def size(self):
return self.__size(self.root)
# Associate value with key.
def put(self, key, value):
if (key == None):
raise TypeError('Cannot put key of type None.')
self.root = self.__put(self.root, key, value)
# Return value corresponding to given key, or None if no such key.
def get(self, key):
if (key == None):
raise TypeError('Cannot search for key of type None.')
node = self.root
while (node != None):
if key < node.key:
node = node.left
elif key > node.key:
node = node.right
else:
return node.value
return None
# Delete the value, key pair associated with the given key.
def delete(self, key):
if (key == None):
raise TypeError('Cannot delete key of type None.')
self.root = self.__delete(self.root, key)
# Delete the value, key pair associated with the smallest key from the tree.
def deleteMin(self):
self.root = self.__deleteMin(self.root)
# Return the largest key in the tree less than or equal to given key.
def floor(self, key):
if (key == None):
raise TypeError('Cannot return floor for key of type None.')
node = self.__floor(self.root, key)
if node == None:
return None
return node.key
# The number of keys in the tree less than the given key.
def rank(self, key):
if (key == None):
raise TypeError('Cannot return rank for key of type None.')
return self.__rank(key, self.root)
# Return the node with the smallest key.
def min(self):
return self.__min(self.root)
# Return the number of keys between given high and low keys(1d range count).
def size(self, low, high):
if self.get(high) != None:
return self.rank(high) - self.rank(low) + 1
return self.rank(high) - self.rank(low)
# Return list of keys between low and high(1d range search).
def rangeSearch(self, low, high):
keysList = []
self.__rangeSearch(self.root, low, high, keysList)
return keysList
# Inorder iterator for the binary search tree.
def __iter__(self):
self.inorder = []
self.__inorder(self.root, self.inorder)
return iter(self.inorder)
###
### HELPER FUNCTIONS
###
def __size(self, node):
if node == None:
return 0
return node.count
def __put(self, node, key, value):
if node == None:
return self._Node(key, value)
if key < node.key:
node.left = self.__put(node.left, key, value)
elif key > node.key:
node.right = self.__put(node.right, key, value)
else:
node.value = value
node.count = 1 + self.__size(node.left) + self.__size(node.right)
return node
def __floor(self, node, key):
if node == None:
return None
if key < node.key:
return self.__floor(node.left, key)
elif key > node.key:
temp = self.__floor(node.right, key)
if temp != None:
return temp
return node
else:
return node
def __rank(self, key, node):
if node == None:
return 0
if key < node.key:
return self.__rank(key, node.left)
elif key > node.key:
return self.__size(node.left) + 1 + self.__rank(key, node.right)
else:
return self.__size(node.left)
def __inorder(self, node, inorder):
if node == None:
return
self.__inorder(node.left, inorder)
inorder.append(node.key)
self.__inorder(node.right, inorder)
def __deleteMin(self, node):
if node == None:
return None
if node.left == None:
return node.right
node.left = self.__deleteMin(node.left)
node.count = self.__size(node.left) + 1 + self.__size(node.right)
return node
def __delete(self, node, key):
if node == None:
return None
if key < node.key:
node.left = self.__delete(node.left, key)
elif key > node.key:
node.right = self.__delete(node.right, key)
else:
if node.right == None:
return node.left
if node.left == None:
return node.right
temp = node
node = self.__min(temp.right)
node.right = self.__deleteMin(temp.right)
node.left = temp.left
node.count = self.__size(node.left) + 1 + self.__size(node.right)
return node
def __min(self, node):
if node == None:
return None
if node.left == None:
return node
return self.__min(node.left)
def __rangeSearch(self, node, low, high, keysList):
if node == None:
return
if low < node.key:
self.__rangeSearch(node.left, low, high, keysList)
if high > node.key:
self.__rangeSearch(node.right, low, high, keysList)
if low <= node.key and high >= node.key:
keysList.append(node.key)