-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
452 lines (374 loc) · 18.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import argparse
import torch
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid, WikipediaNetwork, Actor, WebKB
from torch_geometric.utils import train_test_split_edges, to_undirected
from models.cusp_model import CUSPModel
from layers.cusp_laplacian import CuspLaplacian
import networkx as nx
import numpy as np
import random
import geoopt
import torch_geometric.transforms as T
from sklearn.metrics import f1_score
# import wandb
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def main():
parser = argparse.ArgumentParser(description="CUSP Model Training with Node Classification and Link Prediction")
parser.add_argument('--seed', type=int, default=42, help='Random seed')
parser.add_argument('--num_runs', type=int, default=1, help='Number of experiment runs')
parser.add_argument('--device', type=str, default='cuda', choices=['cuda', 'cpu'], help='Device to use')
parser.add_argument('--dataset', type=str, default='Cora', choices=['Cora', 'Citeseer', 'PubMed', 'Chameleon', 'Actor', 'Squirrel', 'Texas', 'Cornell'], help='Dataset name')
parser.add_argument('--model', type=str, default='cusp', choices=['cusp'], help='Model to use (CUSP)')
parser.add_argument('--manifold_config', type=str, default='H16H16S16E16', help='Product manifold signature in the form of a string.')
parser.add_argument('--K', type=int, default=10, help='Number of filters in the filterbank.')
parser.add_argument('--alpha', type=float, default=0.1, help='Alpha parameter for GPR propagation')
parser.add_argument('--Init', type=str, default='PPR', choices=['SGC', 'PPR', 'NPPR', 'Random', 'WS'], help='Initialization method for GPR weights')
parser.add_argument('--Gamma', type=float, default=None, help='Gamma parameter for GPR weights')
parser.add_argument('--d_f', type=int, default=64, help='Dimensionality of curvature embeddings.')
parser.add_argument('--num_frequencies', type=int, default=16, help='Number of frequencies for curvature encoding')
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout rate')
parser.add_argument('--dprate', type=float, default=0.5, help='Dropout rate for propagation')
parser.add_argument('--epochs', type=int, default=200, help='Number of training epochs')
parser.add_argument('--lr', type=float, default=0.001, help='Learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay')
parser.add_argument('--optimizer', type=str, default='adam', choices=['adam', 'radam'], help='Optimizer to use')
parser.add_argument('--ricci_alpha', type=float, default=0.5, help='Alpha parameter for Ollivier-Ricci curvature')
parser.add_argument('--task', type=str, default='node_classification', choices=['node_classification', 'link_prediction'], help='Task to perform')
parser.add_argument('--use_cusp_laplacian', action='store_true', help='Use Cusp Laplacian (default). If not set, uses standard graph Laplacian.')
parser.add_argument('--use_curvature_encoding', action='store_true', help='Use curvature-based positional encoding in Cusp Pooling.')
parser.add_argument('--use_cusp_pooling', action='store_true', help='Use Cusp Pooling with hierarchical attention. If not set, uses simple embedding concatenation.')
parser.add_argument('--euclidean_variant', action='store_true', help='Use Euclidean variant of the model (all manifolds are Euclidean).')
parser.add_argument('--wandb_project', type=str, default='CUSP_GNN', help='WandB project name')
parser.add_argument('--wandb_entity', type=str, help='WandB entity (team/user)')
parser.add_argument('--hidden', type=int, default=64, help='Hidden dimension size')
parser.add_argument('--ppnp', type=str, default='GPR_prop', choices=['PPNP', 'GPR_prop'], help='Propagation method')
args = parser.parse_args()
# Initialize WandB
# wandb.init(project=args.wandb_project, entity=args.wandb_entity, config=args)
# Set device
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
# Collect metrics over runs
metrics = []
for run in range(args.num_runs):
print(f"\nRun {run + 1}/{args.num_runs}")
# Set random seed for this run
current_seed = args.seed + run
set_seed(current_seed)
# Load all datasets (reload for each run to ensure randomness in splits)
# Downloads all together in the first run
datasets = {
"Cora": Planetoid(root="data/Cora", name="Cora", transform=T.ToUndirected()),
"Citeseer": Planetoid(root="data/Citeseer", name="Citeseer", transform=T.ToUndirected()),
"PubMed": Planetoid(root="data/PubMed", name="PubMed", transform=T.ToUndirected()),
"Chameleon": WikipediaNetwork(root="data/WikipediaNetwork", name="chameleon", transform=T.ToUndirected()),
"Actor": Actor(root="data/Actor", transform=T.ToUndirected()),
"Squirrel": WikipediaNetwork(root="data/WikipediaNetwork", name="squirrel", transform=T.ToUndirected()),
"Texas": WebKB(root="data/WebKB", name="Texas", transform=T.ToUndirected()),
"Cornell": WebKB(root="data/WebKB", name="Cornell", transform=T.ToUndirected())
}
dataset = datasets.get(args.dataset)
if dataset is None:
raise ValueError(f"Unsupported dataset: {args.dataset}")
data = dataset[0]
if args.dataset in ['Chameleon', 'Actor', 'Squirrel', 'Texas', 'Cornell']:
#Because there are multiple masks present in these datasets, and we use just one
data.train_mask = data.train_mask[:, 0]
data.val_mask = data.val_mask[:, 0]
data.test_mask = data.test_mask[:, 0]
num_nodes = data.x.shape[0]
# Set model input and output dimensions
input_dim = data.num_features
output_dim = dataset.num_classes
# Convert edge_index to NetworkX graph
edge_index = data.edge_index
num_edges = edge_index.size(1)
edge_list = edge_index.t().tolist() # Shape: (E, 2)
G = nx.Graph()
G.add_edges_from(edge_list)
if args.use_cusp_laplacian:
cusp_laplacian = CuspLaplacian(nx_graph=G, num_nodes = num_nodes, alpha=args.ricci_alpha)
data.edge_weight = cusp_laplacian.get_ricci_edge_weights(data.edge_index)
data.kappa = cusp_laplacian.get_curvature_values() # Curvature values for nodes (N,)
else:
# Assign edge weights as ones to recover standard graph Laplacian
num_edges = data.edge_index.size(1)
data.edge_weight = torch.ones(num_edges, dtype=torch.float, device=data.edge_index.device)
data.kappa = torch.zeros(data.num_nodes, dtype=torch.float, device=data.edge_index.device) # All curvatures are 0 in Euclidean space
# If task is link prediction, split edges
if args.task == 'link_prediction':
# Preserve node features before splitting edges
x = data.x.clone()
# Ensure the graph is undirected
data.edge_index = to_undirected(data.edge_index)
# Split edges into train/val/test sets
data = train_test_split_edges(data)
# Restore node features
data.x = x
# Define model based on the selected argument
if args.model == 'cusp':
model = CUSPModel(
input_dim=input_dim,
output_dim=output_dim,
manifold_config_str=args.manifold_config,
K=args.K,
alpha=args.alpha,
Init=args.Init,
Gamma=args.Gamma,
d_f=args.d_f,
num_frequencies=args.num_frequencies,
dropout=args.dropout,
dprate=args.dprate,
use_curvature_encoding=args.use_curvature_encoding,
use_cusp_pooling=args.use_cusp_pooling,
euclidean_variant=args.euclidean_variant,
use_cusp_laplacian=args.use_cusp_laplacian
)
else:
raise ValueError(f"Unsupported model: {args.model}")
model = model.to(device)
data = data.to(device)
# Define optimizer (Choose between Riemannian Adam and the traditional Adam operator)
if args.optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer == 'radam':
optimizer = geoopt.optim.RiemannianAdam(model.parameters(), lr=args.lr, stabilize=10)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1)
# Define loss functions based on task
if args.task == 'node_classification':
criterion = F.nll_loss
# Training loop
best_metric = train_node_classification(model, data, optimizer, scheduler, args)
elif args.task == 'link_prediction':
criterion = F.binary_cross_entropy_with_logits
# Training loop
best_metric = train_link_prediction(model, data, optimizer, scheduler, args)
else:
raise ValueError(f"Unsupported task: {args.task}")
metrics.append(best_metric)
# Compute average and standard deviation of best metrics
avg_metric = np.mean(metrics)
std_metric = np.std(metrics)
print(f"\nFinal Results over {args.num_runs} runs:")
if args.task == 'node_classification':
print(f"Best Test F1 Score: {avg_metric:.4f} ± {std_metric:.4f}")
elif args.task == 'link_prediction':
aucs, aps = zip(*metrics)
avg_auc = np.mean(aucs)
std_auc = np.std(aucs)
avg_ap = np.mean(aps)
std_ap = np.std(aps)
print(f"Best AUC: {avg_auc:.4f} ± {std_auc:.4f}")
print(f"Best AP: {avg_ap:.4f} ± {std_ap:.4f}")
def train_node_classification(model, data, optimizer, scheduler, args):
"""
Training loop for Node Classification.
Returns the best test F1 score.
"""
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
model = model.to(device)
data = data.to(device)
best_val_f1 = 0
best_test_f1 = 0
# Lists to store metrics over epochs
train_f1_list = []
val_f1_list = []
test_f1_list = []
loss_list = []
curvature_logs = []
for epoch in range(1, args.epochs + 1):
model.train()
optimizer.zero_grad()
out = model(data) # Raw logits
loss = F.cross_entropy(out[data.train_mask], data.y[data.train_mask])
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
scheduler.step()
train_f1, val_f1, test_f1 = evaluate_node_classification(model, data)
if val_f1 > best_val_f1:
best_val_f1 = val_f1
best_test_f1 = test_f1
# Store metrics
train_f1_list.append(train_f1)
val_f1_list.append(val_f1)
test_f1_list.append(test_f1)
loss_list.append(loss.item())
# Log metrics to WandB
# wandb.log({
# 'epoch': epoch,
# 'loss': loss.item(),
# 'train_f1': train_f1,
# 'val_f1': val_f1,
# 'test_f1': test_f1
# })
# Get curvatures and log them
curvatures = model.get_curvatures()
curvature_logs.append(curvatures)
# for key, value in curvatures.items():
# wandb.log({f'curvature/{key}': value, 'epoch': epoch})
# if epoch % 10 == 0 or epoch == 1:
print(f'Epoch: {epoch:03d}, Loss: {loss.item():.4f}, '
f'Train F1: {train_f1:.4f}, Val F1: {val_f1:.4f}, Test F1: {test_f1:.4f}')
print(f'Best Val F1: {best_val_f1:.4f}, Best Test F1: {best_test_f1:.4f}')
# After training, print filter weights, component weights, and curvatures
filter_weights = model.get_filter_weights()
if filter_weights is not None:
print('\nFilter Weights (epsilon):')
print(filter_weights)
# wandb.log({'filter_weights': wandb.Histogram(filter_weights)})
component_weights = model.get_component_weights()
if component_weights is not None:
print('\nComponent Weights (theta):')
for idx, theta in enumerate(component_weights):
print(f'Theta {idx}: {theta}')
# wandb.log({f'component_weights/theta_{idx}': wandb.Histogram(theta)})
print('\nLearned Curvatures:')
final_curvatures = model.get_curvatures()
for key, value in final_curvatures.items():
print(f'{key}: {value}')
# wandb.log({f'final_curvature/{key}': value})
# Report best metrics to WandB
# wandb.log({'best_val_f1': best_val_f1, 'best_test_f1': best_test_f1})
return best_test_f1 # Return the best test F1 score
def evaluate_node_classification(model, data):
"""
Evaluation function for Node Classification, returning F1 score instead of accuracy.
"""
model.eval()
with torch.no_grad():
logits = model(data)
preds = logits.argmax(dim=1).cpu().numpy() # Convert predictions to numpy
labels = data.y.cpu().numpy() # Convert true labels to numpy
# Calculate F1 score for train, validation, and test sets
train_f1 = f1_score(labels[data.train_mask.cpu()], preds[data.train_mask.cpu()], average='weighted')
val_f1 = f1_score(labels[data.val_mask.cpu()], preds[data.val_mask.cpu()], average='weighted')
test_f1 = f1_score(labels[data.test_mask.cpu()], preds[data.test_mask.cpu()], average='weighted')
return train_f1, val_f1, test_f1
# Modify train_link_prediction to return best AUC and AP
def train_link_prediction(model, data, optimizer, scheduler, args):
"""
Training loop for Link Prediction, handling both CUSP and baseline models.
Returns the best AUC and AP scores.
"""
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
model = model.to(device)
data = data.to(device)
best_auc = 0
best_ap = 0
# Lists to store metrics over epochs
auc_list = []
ap_list = []
loss_list = []
curvature_logs = []
train_neg_edge_index = sample_neg_edges_from_mask(data.train_neg_adj_mask, num_neg_edges=data.train_pos_edge_index.size(1))
for epoch in range(1, args.epochs + 1):
model.train()
optimizer.zero_grad()
# Generate node embeddings using training edges
if args.model == 'cusp':
z = model.encode(data.x, data.train_pos_edge_index, kappa=data.kappa)
else:
# Baseline models (GCN, GAT, SAGE) don't use kappa
z = model.encode(data.x, data.train_pos_edge_index)
# Compute loss using positive and negative edges
loss = link_prediction_loss(model, z, data.train_pos_edge_index, train_neg_edge_index)
loss.backward()
optimizer.step()
scheduler.step()
# Evaluate on validation set
auc, ap = evaluate_link_prediction(args, model, data)
if auc > best_auc:
best_auc = auc
best_ap = ap
# Store metrics
auc_list.append(auc)
ap_list.append(ap)
loss_list.append(loss.item())
# Log metrics to WandB
# wandb.log({
# 'epoch': epoch,
# 'loss': loss.item(),
# 'AUC': auc,
# 'AP': ap
# })
# Get curvatures and log them
curvatures = model.get_curvatures()
curvature_logs.append(curvatures)
# for key, value in curvatures.items():
# wandb.log({f'curvature/{key}': value, 'epoch': epoch})
print(f'Epoch: {epoch:03d}, Loss: {loss.item():.4f}, AUC: {auc:.4f}, AP: {ap:.4f}')
print(f'Best AUC: {best_auc:.4f}, Best AP: {best_ap:.4f}')
# After training, print filter weights, component weights, and curvatures
filter_weights = model.get_filter_weights()
if filter_weights is not None:
print('\nFilter Weights (epsilon):')
print(filter_weights)
# wandb.log({'filter_weights': wandb.Histogram(filter_weights)})
component_weights = model.get_component_weights()
if component_weights is not None:
print('\nComponent Weights (theta):')
for idx, theta in enumerate(component_weights):
print(f'Theta {idx}: {theta}')
# wandb.log({f'component_weights/theta_{idx}': wandb.Histogram(theta)})
print('\nLearned Curvatures:')
final_curvatures = model.get_curvatures()
for key, value in final_curvatures.items():
print(f'{key}: {value}')
# wandb.log({f'final_curvature/{key}': value})
# Report best metrics to WandB
# wandb.log({'best_auc': best_auc, 'best_ap': best_ap})
return (best_auc, best_ap) # Return the best AUC and AP scores
def link_prediction_loss(model, z, pos_edge_index, neg_edge_index):
"""
Compute link prediction loss for both positive and negative edges using the inner product decoder.
"""
# Positive edge loss
pos_logits = model.decode(z, pos_edge_index)
pos_labels = torch.ones(pos_logits.size(0), device=pos_logits.device)
# Negative edge loss
neg_logits = model.decode(z, neg_edge_index)
neg_labels = torch.zeros(neg_logits.size(0), device=neg_logits.device)
# Concatenate positive and negative logits and labels
logits = torch.cat([pos_logits, neg_logits])
labels = torch.cat([pos_labels, neg_labels])
# Binary cross-entropy loss
loss = F.binary_cross_entropy_with_logits(logits, labels)
return loss
def sample_neg_edges_from_mask(neg_adj_mask, num_neg_edges):
"""
Samples negative edges from the negative adjacency mask.
Args:
neg_adj_mask (Tensor): Negative adjacency mask of shape [num_nodes, num_nodes].
num_neg_edges (int): Number of negative edges to sample.
Returns:
Tensor: Negative edge indices of shape [2, num_neg_edges].
"""
# Get all possible negative edge indices
neg_edge_indices = torch.nonzero(neg_adj_mask, as_tuple=False).t() # Shape: [2, num_neg_edges_available]
num_neg_available = neg_edge_indices.size(1)
if num_neg_available < num_neg_edges:
raise ValueError(f"Not enough negative edges to sample: requested {num_neg_edges}, available {num_neg_available}")
# Randomly permute and select the required number of negative edges
perm = torch.randperm(num_neg_available)
neg_edge_index = neg_edge_indices[:, perm[:num_neg_edges]]
return neg_edge_index
def evaluate_link_prediction(args, model, data):
"""
Evaluation function for Link Prediction, handling both CUSP and baseline models.
"""
model.eval()
with torch.no_grad():
if args.model == 'cusp':
z = model.encode(data.x, data.train_pos_edge_index, kappa=data.kappa)
else:
# Baseline models (GCN, GAT, SAGE) don't use kappa
z = model.encode(data.x, data.train_pos_edge_index)
auc, ap = model.test(z, data.test_pos_edge_index, data.test_neg_edge_index)
return auc, ap
if __name__ == '__main__':
main()