Skip to content

Commit 6137a6f

Browse files
mlloreda9prady9
authored andcommitted
Documented statistics API.
1 parent 548b321 commit 6137a6f

File tree

1 file changed

+117
-0
lines changed

1 file changed

+117
-0
lines changed

arrayfire/statistics.py

+117
Original file line numberDiff line numberDiff line change
@@ -15,6 +15,27 @@
1515
from .array import *
1616

1717
def mean(a, weights=None, dim=None):
18+
"""
19+
Calculate mean along a given dimension.
20+
21+
Parameters
22+
----------
23+
a: af.Array
24+
The input array.
25+
26+
weights: optional: af.Array. default: None.
27+
Array to calculate the weighted mean. Must match size of the
28+
input array.
29+
30+
dim: optional: int. default: None.
31+
The dimension for which to obtain the mean from input data.
32+
33+
Returns
34+
-------
35+
output: af.Array
36+
Array containing the mean of the input array along a given
37+
dimension.
38+
"""
1839
if dim is not None:
1940
out = Array()
2041

@@ -39,6 +60,31 @@ def mean(a, weights=None, dim=None):
3960
return real if imag == 0 else real + imag * 1j
4061

4162
def var(a, isbiased=False, weights=None, dim=None):
63+
"""
64+
Calculate variance along a given dimension.
65+
66+
Parameters
67+
----------
68+
a: af.Array
69+
The input array.
70+
71+
isbiased: optional: Boolean. default: False.
72+
Boolean denoting population variance (false) or sample
73+
variance (true).
74+
75+
weights: optional: af.Array. default: None.
76+
Array to calculate for the weighted mean. Must match size of
77+
the input array.
78+
79+
dim: optional: int. default: None.
80+
The dimension for which to obtain the variance from input data.
81+
82+
Returns
83+
-------
84+
output: af.Array
85+
Array containing the variance of the input array along a given
86+
dimension.
87+
"""
4288
if dim is not None:
4389
out = Array()
4490

@@ -63,6 +109,24 @@ def var(a, isbiased=False, weights=None, dim=None):
63109
return real if imag == 0 else real + imag * 1j
64110

65111
def stdev(a, dim=None):
112+
"""
113+
Calculate standard deviation along a given dimension.
114+
115+
Parameters
116+
----------
117+
a: af.Array
118+
The input array.
119+
120+
dim: optional: int. default: None.
121+
The dimension for which to obtain the standard deviation from
122+
input data.
123+
124+
Returns
125+
-------
126+
output: af.Array
127+
Array containing the standard deviation of the input array
128+
along a given dimension.
129+
"""
66130
if dim is not None:
67131
out = Array()
68132
safe_call(backend.get().af_stdev(c_pointer(out.arr), a.arr, c_int_t(dim)))
@@ -76,6 +140,26 @@ def stdev(a, dim=None):
76140
return real if imag == 0 else real + imag * 1j
77141

78142
def cov(a, isbiased=False, dim=None):
143+
"""
144+
Calculate covariance along a given dimension.
145+
146+
Parameters
147+
----------
148+
a: af.Array
149+
The input array.
150+
151+
isbiased: optional: Boolean. default: False.
152+
Boolean denoting whether biased estimate should be taken.
153+
154+
dim: optional: int. default: None.
155+
The dimension for which to obtain the covariance from input data.
156+
157+
Returns
158+
-------
159+
output: af.Array
160+
Array containing the covariance of the input array along a
161+
given dimension.
162+
"""
79163
if dim is not None:
80164
out = Array()
81165
safe_call(backend.get().af_cov(c_pointer(out.arr), a.arr, isbiased, c_int_t(dim)))
@@ -89,6 +173,23 @@ def cov(a, isbiased=False, dim=None):
89173
return real if imag == 0 else real + imag * 1j
90174

91175
def median(a, dim=None):
176+
"""
177+
Calculate median along a given dimension.
178+
179+
Parameters
180+
----------
181+
a: af.Array
182+
The input array.
183+
184+
dim: optional: int. default: None.
185+
The dimension for which to obtain the median from input data.
186+
187+
Returns
188+
-------
189+
output: af.Array
190+
Array containing the median of the input array along a
191+
given dimension.
192+
"""
92193
if dim is not None:
93194
out = Array()
94195
safe_call(backend.get().af_median(c_pointer(out.arr), a.arr, c_int_t(dim)))
@@ -102,6 +203,22 @@ def median(a, dim=None):
102203
return real if imag == 0 else real + imag * 1j
103204

104205
def corrcoef(x, y):
206+
"""
207+
Calculate the correlation coefficient of the input arrays.
208+
209+
Parameters
210+
----------
211+
x: af.Array
212+
The first input array.
213+
214+
y: af.Array
215+
The second input array.
216+
217+
Returns
218+
-------
219+
output: af.Array
220+
Array containing the correlation coefficient of the input arrays.
221+
"""
105222
real = c_double_t(0)
106223
imag = c_double_t(0)
107224
safe_call(backend.get().af_corrcoef(c_pointer(real), c_pointer(imag), x.arr, y.arr))

0 commit comments

Comments
 (0)