-
Notifications
You must be signed in to change notification settings - Fork 0
ScriptingReference
<a name="abs-org.das2.qds.QDataSet->
abs( QDataSet ds1 ) → QDataSet
element-wise abs. For vectors, this returns the length of each element.
Note Jython conflict needs to be resolved. Note the result of this
will have dimensionless units, and see magnitude for the more abstract
operator.
For ratio-type units (Stevens) like "kms", the unit is preserved.
ds1 - the dataset
dataset with the same geometry
Ops#magnitude(org.das2.qds.QDataSet) magnitude(ds), which preserves the sign.
<a name="abs-java.lang.Object->
abs( java.lang.Object ds1 ) → QDataSet
promote the list, double, array etc to QDataSet before taking abs.
ds1 - list, double, array, etc
the abs in a QDataSet
<a name="accum-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
accum( QDataSet accumDs, QDataSet ds ) → QDataSet
return an array that is the running sum of each element in the array, starting with the value accum. Result[i]= accum + total( ds[0:i+1] )
accumDs - the initial value of the running sum. Last value of Rank 0 or Rank 1 dataset is used, or may be null.
ds - each element is added to the running sum
the running of each element in the array.
<a name="accum-java.lang.Object-java.lang.Object->
accum( java.lang.Object accumDs, java.lang.Object ds ) → QDataSet
QDataSet
<a name="accum-org.das2.qds.QDataSet->
accum( QDataSet ds ) → QDataSet
return an array that is the running sum of each element in the array, starting with the value accum. Result[i]= total( ds[0:i+1] )
ds - each element is added to the running sum
the running of each element in the array.
<a name="accum-java.lang.Object->
accum( java.lang.Object ds ) → QDataSet
QDataSet
<a name="acos-org.das2.qds.QDataSet->
acos( QDataSet ds ) → QDataSet
element-wise arccos.
ds -
QDataSet
<a name="acos-java.lang.Object->
acos( java.lang.Object ds ) → QDataSet
QDataSet
<a name="add-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
add( QDataSet ds1, QDataSet ds2 ) → QDataSet
add the two datasets which have the compatible geometry and units. For example,
The units handling is quite simple, and this will soon change. Note that the Jython operator + is overloaded to this method.{@code ds1=timegen('2014-10-15T07:23','60s',300) ds2=dataset('30s') print add(ds1,ds2) }
ds1 - a rank N dataset
ds2 - a rank M dataset with compatible geometry
the element-wise sum of the two datasets.
#addGen(org.das2.qds.QDataSet, org.das2.qds.QDataSet, java.util.Map) addGen, which shows how units are resolved.
<a name="add-java.lang.Object-java.lang.Object->
add( java.lang.Object ds1, java.lang.Object ds2 ) → QDataSet
add the two datasets which have the compatible geometry and units.
ds1 - QDataSet, array, string, scalar argument
ds2 - QDataSet, array, string, scalar argument with compatible geometry.
the element-wise sum of the two datasets.
<a name="and-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
and( QDataSet ds1, QDataSet ds2 ) → QDataSet
element-wise logical and function. non-zero is true, zero is false.
ds1 -
ds2 -
QDataSet
#bitwiseAnd(org.das2.qds.QDataSet, org.das2.qds.QDataSet)
<a name="and-java.lang.Object-java.lang.Object->
and( java.lang.Object ds1, java.lang.Object ds2 ) → QDataSet
QDataSet
<a name="append-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
append( QDataSet ds1, QDataSet ds2 ) → QDataSet
append two datasets that are QUBEs. DEPEND_0 and other metadata is handled as well. So for example:
If both datasets are ArrayDataSets and of the same component type, then the result will have this type as well. Otherwise DDataSet is returned.ds1= findgen(10) ds2= findgen(12) print append(ds1,ds2) ; dataSet[22] (dimensionless)
ds1 - null or rank N dataset
ds2 - rank N dataset with compatible geometry.
QDataSet
<a name="appendEvents-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
appendEvents( QDataSet ev1, QDataSet ev2 ) → QDataSet
provide explicit method for appending two events scheme datasets. This will probably be deprecated, and this was added at 17:30 for a particular need.
ev1 -
ev2 -
QDataSet
<a name="applyBinaryOp-org.das2.qds.QDataSet-org.das2.qds.QDataSet-Ops.BinaryOp->
applyBinaryOp( QDataSet ds1, QDataSet ds2, org.das2.qds.ops.Ops.BinaryOp op ) → MutablePropertyDataSet
apply the binary operator element-for-element of the two datasets, minding dataset geometry, fill values, etc. The two datasets are coerced to compatible geometry, if possible (e.g.Temperature[Time]+2deg), using CoerceUtil.coerce. Structural metadata such as DEPEND_0 are preserved where this is reasonable, and dimensional metadata such as UNITS are dropped.
ds1 - the first argument
ds2 - the second argument
op - binary operation for each pair of elements
the result with the same geometry as the pair.
<a name="applyBinaryOp-java.lang.Object-java.lang.Object-Ops.BinaryOp->
applyBinaryOp( java.lang.Object ds1, java.lang.Object ds2, org.das2.qds.ops.Ops.BinaryOp op ) → MutablePropertyDataSet
As with applyBinaryOp, but promote compatible objects to QDataSet first.
ds1 - the first operand
ds2 - the second operand
op - binary operation for each pair of elements
the result with the same geometry as the pair.
<a name="applyIndex-org.das2.qds.QDataSet-org.das2.qds.QDataSet-Number->
applyIndex( QDataSet vv, QDataSet ds, java.lang.Number fillValue ) → WritableDataSet
apply the indeces, checking for out-of-bounds values.
vv - values to return, a rank 1, N-element dataset.
ds - the indeces.
fillValue - the value to use when the index is out-of-bounds.
data a dataset with the geometry of ds and the units of values.
#subset(org.das2.qds.QDataSet, org.das2.qds.QDataSet) subset, which does the same thing.
#applyIndex(org.das2.qds.QDataSet, int, org.das2.qds.QDataSet)
<a name="applyIndex-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
applyIndex( QDataSet ds, QDataSet r ) → WritableDataSet
apply the indeces
ds - values to return, a rank 1, N-element dataset.
r - the indeces.
data a dataset with the geometry of ds and the units of values.
#subset(org.das2.qds.QDataSet, org.das2.qds.QDataSet) subset, which does the same thing.
#applyIndex(org.das2.qds.QDataSet, int, org.das2.qds.QDataSet)
<a name="applyIndex-java.lang.Object-org.das2.qds.QDataSet->
applyIndex( java.lang.Object dso, QDataSet r ) → WritableDataSet
apply the indeces
dso - values to return, a rank 1, N-element dataset.
r - the indices.
data a dataset with the geometry of ds and the units of values.
#applyIndex(org.das2.qds.QDataSet, int, org.das2.qds.QDataSet)
<a name="applyIndex-org.das2.qds.QDataSet-int-org.das2.qds.QDataSet->
applyIndex( QDataSet ds, int dimension, QDataSet indices ) → MutablePropertyDataSet
apply the indeces to the given dimension.
ds -
dimension -
indices -
MutablePropertyDataSet
<a name="applyUnaryOp-org.das2.qds.QDataSet-Ops.UnaryOp->
applyUnaryOp( QDataSet ds1, org.das2.qds.ops.Ops.UnaryOp op ) → MutablePropertyDataSet
apply the unary operation (such as "cos") to the dataset. DEPEND_[0-3] is propagated.
ds1 - the argument
op - the operation for each element.
the result the the same geometry.
<a name="applyUnaryOp-java.lang.Object-Ops.UnaryOp->
applyUnaryOp( java.lang.Object ds1, org.das2.qds.ops.Ops.UnaryOp op ) → MutablePropertyDataSet
apply the unary operation (such as "cos") to the dataset. DEPEND_[0-3] is propagated.
ds1 - the argument which can be converted to a dataset.
op - the operation for each element.
the result the the same geometry.
<a name="asin-org.das2.qds.QDataSet->
asin( QDataSet ds ) → QDataSet
element-wise arcsin.
ds -
QDataSet
<a name="asin-java.lang.Object->
asin( java.lang.Object ds ) → QDataSet
QDataSet
<a name="atan-org.das2.qds.QDataSet->
atan( QDataSet ds ) → QDataSet
element-wise atan.
ds -
QDataSet
<a name="atan-java.lang.Object->
atan( java.lang.Object ds ) → QDataSet
QDataSet
<a name="atan2-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
atan2( QDataSet y, QDataSet x ) → QDataSet
element-wise atan2, 4-quadrant atan. Note different languages have different argument order.
Microsoft office uses atan2(x,y); IDL uses atan(y,x); Matlab uses atan2(y,x); and
NumPy uses arctan2(y,x).
y - the y values
x - the x values
angles between -PI and PI
<a name="atan2-java.lang.Object-java.lang.Object->
atan2( java.lang.Object dsy, java.lang.Object dsx ) → QDataSet
QDataSet
<a name="autoHistogram-org.das2.qds.QDataSet->
autoHistogram( QDataSet ds ) → QDataSet
AutoHistogram is a one-pass self-scaling histogram, useful in autoranging data.
The data is fed into the routine, and bins will grow as more and more data is added,
to result in about 100 bins. For example, if the initial binsize is 1.0 unit, and the data extent
is 0-200, then bins are combined so that the new binsize is 2.0 units and 100 bins are used.
ds - rank N dataset (all ranks are supported).
rank 1 dataset
<a name="binsWithin-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
binsWithin( QDataSet ds, QDataSet bounds ) → QDataSet
return non-zero where the bins of ds are within the bounds.
ds - rank 2 bins dataset
bounds - a rank 1 bounding box.
rank 1 dataset containing non-zero where the condition is true.
#within(org.das2.qds.QDataSet, org.das2.qds.QDataSet)
<a name="binsWithout-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
binsWithout( QDataSet ds, QDataSet bounds ) → QDataSet
return non-zero where the bins of ds are outside of the bounds.
ds - rank 2 bins dataset
bounds - a rank 1 bounding box.
rank 1 dataset containing non-zero where the condition is true.
#binsWithin(org.das2.qds.QDataSet, org.das2.qds.QDataSet)
<a name="bitwiseAnd-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
bitwiseAnd( QDataSet ds1, QDataSet ds2 ) → QDataSet
bitwise AND operator treats the data as (32-bit) integers, and returns the bit-wise AND.
ds1 -
ds2 -
bit-wise AND.
<a name="bitwiseAnd-java.lang.Object-java.lang.Object->
bitwiseAnd( java.lang.Object ds1, java.lang.Object ds2 ) → QDataSet
QDataSet
<a name="bitwiseOr-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
bitwiseOr( QDataSet ds1, QDataSet ds2 ) → QDataSet
bitwise OR operator treats the data as (32-bit) integers, and returns the bit-wise OR.
ds1 -
ds2 -
bit-wise OR.
<a name="bitwiseOr-java.lang.Object-java.lang.Object->
bitwiseOr( java.lang.Object ds1, java.lang.Object ds2 ) → QDataSet
QDataSet
<a name="bitwiseXor-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
bitwiseXor( QDataSet ds1, QDataSet ds2 ) → QDataSet
bitwise XOR (exclusive or) operator treats the data as (32-bit) integers, and returns the bit-wise XOR. Note there is no bitwise not, and this is because there are no shorts, bytes. So to implement bitwise not for a 16 bit number you would have bitwiseXor( ds, dataset(2**16-1) ).
ds1 -
ds2 -
bit-wise XOR.
<a name="bitwiseXor-java.lang.Object-java.lang.Object->
bitwiseXor( java.lang.Object ds1, java.lang.Object ds2 ) → QDataSet
QDataSet
<a name="buckshotInterpolate-org.das2.qds.QDataSet-org.das2.qds.QDataSet-org.das2.qds.QDataSet-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
buckshotInterpolate( QDataSet xyz, QDataSet data, QDataSet xinterp, QDataSet yinterp, QDataSet zinterp ) → QDataSet
3-D interpolation performed by tesselating the space (with 4-point tetrahedra) and doing interpolation. NOTE: this does not check units.
xyz - rank 2 bundle of x,y,z data.
data - rank 1 dependent data, a function of x,y,z.
xinterp - the x locations to interpolate, rank 0, 1, or 2.
yinterp - the y locations to interpolate
zinterp - the z locations to interpolate
the interpolated data.
<a name="buckshotInterpolate-org.das2.qds.QDataSet-org.das2.qds.QDataSet-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
buckshotInterpolate( QDataSet xy, QDataSet data, QDataSet xinterp, QDataSet yinterp ) → QDataSet
2-D interpolation performed by tessellating the space (with 3-point triangles) and doing interpolation. NOTE: this does not check units.
xy - rank 2 bundle of independent data x,y points.
data - rank 1 dependent data, a function of x,y.
xinterp - the x locations to interpolate
yinterp - the y locations to interpolate
the interpolated data.
<a name="bundle-org.das2.qds.QDataSet->
bundle( QDataSet ds ) → QDataSet
bundle the dataset, making an initial bundle, adding a bundle dimension.
ds - a rank N dataset
rank N+1 bundle dataset
<a name="bundle-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
bundle( QDataSet ds1, QDataSet ds2 ) → QDataSet
bundle the two datasets, adding if necessary a bundle dimension. This will try to bundle on the second dimension, unlike join. This will also isolate the semantics of bundle dimensions as it's introduced. Note the first argument can be null in order to simplify loops in client code.
ds1 - null, rank N dataset with n records or rank N+1 bundle dataset
ds2 - rank N dataset.
rank N+1 bundle dataset, presently with mutable properties.
#join(org.das2.qds.QDataSet, org.das2.qds.QDataSet)
<a name="bundle-org.das2.qds.QDataSet-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
bundle( QDataSet ds1, QDataSet ds2, QDataSet ds3 ) → QDataSet
bundle three datasets, giving them a common zeroth index, typically time. unlike join. This bundles on the second dimension, unlike join. This is just like bundle(ds1,ds2), in fact this just calls bundle( bundle( ds1,ds2 ), ds3 )
ds1 - rank 1 (for now) dataset with n records or rank 2 bundle dataset
ds2 - rank 1 (for now) dataset with n records
ds3 - rank 1 (for now) dataset with n records
rank 2 [n,3] bundle dataset
#join(org.das2.qds.QDataSet, org.das2.qds.QDataSet)
<a name="bundle-org.das2.qds.QDataSet-org.das2.qds.QDataSet-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
bundle( QDataSet ds1, QDataSet ds2, QDataSet ds3, QDataSet ds4 ) → QDataSet
bundle four datasets, making them share their zeroth index, typically time, unlike join. This is just like bundle(ds1,ds2), in fact this just calls bundle( bundle( bundle( ds1,ds2 ), ds3 ), ds4 )
ds1 - rank 1 (for now) dataset with n records or rank 2 bundle dataset
ds2 - rank 1 (for now) dataset with n records
ds3 - rank 1 (for now) dataset with n records
ds4 - rank 1 (for now) dataset with n records
rank 2 [n,4] bundle dataset
#join(org.das2.qds.QDataSet, org.das2.qds.QDataSet)
<a name="butterworth-org.das2.qds.QDataSet-int-Datum-boolean->
butterworth( QDataSet in, int order, Datum f, boolean lowp ) → QDataSet
Perform Butterworth filter for high pass or low pass.
in - the rank 1 waveform
order - the order of the filter (2,3,4)
f - the frequency, e.g. Units.hertz.createDatum(10)
lowp - true for low pass, false for high pass.
the dataset in the same form.
<a name="butterworth-org.das2.qds.QDataSet-int-Datum-Datum-boolean->
butterworth( QDataSet in, int order, Datum flow, Datum fhigh, boolean pass ) → QDataSet
Perform Butterworth filter for notch or band pass or band reject.
in - the rank 1 waveform
order - the order of the filter (2,3,4)
flow - the lower band limit, e.g. Units.hertz.createDatum(10)
fhigh - the higher band limit, e.g. Units.hertz.createDatum(20)
pass - true for band pass, false for band reject.
the dataset in the same form.
<a name="bytarr-int->
bytarr( int len0 ) → QDataSet
create a dataset filled with zeros, stored in unsigned bytes. Each element can contain numbers from 0 to 255.
len0 - the zeroth dimension length
rank 1 dataset filled with zeros.
<a name="bytarr-int-int->
bytarr( int len0, int len1 ) → QDataSet
create a rank 2 dataset filled with zeros, stored in unsigned bytes.
len0 - the length of the zeroth dimension.
len1 - the length of the first dimension.
rank 2 dataset filled with zeros.
<a name="bytarr-int-int-int->
bytarr( int len0, int len1, int len2 ) → QDataSet
create a rank 3 dataset filled with zeros, stored in unsigned bytes.
len0 - the length of the zeroth dimension.
len1 - the length of the first dimension.
len2 - the length of the second dimension.
rank 3 dataset filled with zeros.
<a name="ceil-org.das2.qds.QDataSet->
ceil( QDataSet ds1 ) → QDataSet
element-wise ceil function.
ds1 -
QDataSet
<a name="ceil-java.lang.Object->
ceil( java.lang.Object x ) → QDataSet
QDataSet
<a name="chirp-org.das2.qds.QDataSet-Datum-Datum-Datum->
chirp( QDataSet t, Datum df0, Datum dt1, Datum df1 ) → QDataSet
scipy chirp function, used for testing.
t - Times at which to evaluate the waveform.
df0 - Frequency (e.g. Hz) at time t=0.
dt1 - Time at which f1
is specified.
df1 - Frequency (e.g. Hz) of the waveform at time t1
.
QDataSet
<a name="circle-org.das2.qds.QDataSet-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
circle( QDataSet radius, QDataSet x, QDataSet y ) → QDataSet
return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location.
x - the x coordinate of the circle
y - the y coordinate of the circle
radius - rank 0 dataset
QDataSet that when plotted is a circle.
<a name="circle-double-double-double->
circle( double radius, double x, double y ) → QDataSet
return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location. Note this is presently returned as Y[X], but should probably return a rank 2 dataset that is a bundle.
x - the x coordinate of the circle
y - the y coordinate of the circle
radius - rank 0 dataset
QDataSet that when plotted is a circle.
<a name="circle-org.das2.qds.QDataSet->
circle( QDataSet radius ) → QDataSet
return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location.
radius - rank 0 dataset
QDataSet that when plotted is a circle.
<a name="circle-double->
circle( double dradius ) → QDataSet
return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location.
dradius -
QDataSet that when plotted is a circle.
<a name="circle-String->
circle( java.lang.String sradius ) → QDataSet
return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location.
sradius - string parsed into rank 0 dataset
QDataSet that when plotted is a circle.
<a name="clearWritable-WritableDataSet->
clearWritable( WritableDataSet ds ) → void
assign zeros to all the values of the dataset. The dataset must be mutable. This was used to verify Jython behavior.
ds -
void
<a name="collapse0-org.das2.qds.QDataSet-int-int->
collapse0( QDataSet fillDs, int st, int en ) → QDataSet
this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the zeroth dimension. collapse0( ds[30,20] ) → ds[20]
fillDs -
st - the start index
en - the non-inclusive end index
the averaged dataset
<a name="collapse0-org.das2.qds.QDataSet->
collapse0( QDataSet fillDs ) → QDataSet
this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the zeroth dimension. collapse0( ds[30,20] ) → ds[20]
fillDs -
the averaged dataset
<a name="collapse0R4-org.das2.qds.QDataSet-ProgressMonitor->
collapse0R4( QDataSet ds, ProgressMonitor mon ) → QDataSet
Collapse the rank 4 dataset on the zeroth index.
ds - rank 4 dataset
mon -
rank 3 dataset
<a name="collapse1-org.das2.qds.QDataSet->
collapse1( QDataSet ds ) → QDataSet
this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the first dimension collapse1( ds[30,20] ) → ds[30]
ds -
the averaged dataset
<a name="collapse1R4-org.das2.qds.QDataSet-ProgressMonitor->
collapse1R4( QDataSet ds, ProgressMonitor mon ) → QDataSet
Collapse the rank 4 dataset on the first index.
ds - rank 4 dataset
mon -
rank 3 dataset
<a name="collapse2-org.das2.qds.QDataSet->
collapse2( QDataSet fillDs ) → QDataSet
this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the first dimension collapse2( ds[30,20,10,5] ) → ds[30,20,5]
fillDs -
the averaged dataset
<a name="collapse2R4-org.das2.qds.QDataSet-ProgressMonitor->
collapse2R4( QDataSet ds, ProgressMonitor mon ) → QDataSet
Collapse the rank 4 dataset on the second index.
ds - rank 4 dataset
mon -
rank 3 dataset
<a name="collapse3-org.das2.qds.QDataSet->
collapse3( QDataSet fillDs ) → QDataSet
this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the first dimension collapse3( ds[30,20,10,5] ) → ds[30,20,10]
fillDs -
the averaged dataset
<a name="collapse3R4-org.das2.qds.QDataSet-ProgressMonitor->
collapse3R4( QDataSet ds, ProgressMonitor mon ) → QDataSet
Collapse the rank 4 dataset on the third index.
ds - rank 4 dataset
mon -
rank 3 dataset
<a name="colorFromString-String->
colorFromString( java.lang.String sval ) → java.awt.Color
return the color encoded as one of:
- "red" or "RED" or X11 color names like "LightPink"
- #FF0000
- 255,0,0 or 1.0,0,0
sval - the string representation
the color
<a name="complexConj-org.das2.qds.QDataSet->
complexConj( QDataSet ds ) → QDataSet
return the complex conjugate of the rank 1 or rank 2 QDataSet.
ds - ds[2] or ds[n,2]
ds[2] or ds[n,2]
#complexMultiply(org.das2.qds.QDataSet, org.das2.qds.QDataSet)
<a name="complexDataset-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
complexDataset( QDataSet realPart, QDataSet imaginaryPart ) → QDataSet
create a complex dataset.
realPart - the real component.
imaginaryPart - the complex component.
complex dataset
org.das2.qds.examples.Schemes#rank2ComplexNumbers()
<a name="complexMultiply-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
complexMultiply( QDataSet ds1, QDataSet ds2 ) → QDataSet
perform complex multiplication, where the two datasets must have the same rank and must both end with a complex dimension.
ds1 - ds[2] or ds[n,2] or ds[n,m,2]
ds2 - ds[2] or ds[n,2] or ds[n,m,2]
ds[2] or ds[n,2] or ds[n,m,2]
#complexConj(org.das2.qds.QDataSet)
<a name="concatenate-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
concatenate( QDataSet ds1, QDataSet ds2 ) → QDataSet
concatenates the two datasets together, appending the datasets on the zeroth dimension. The two datasets must be QUBES have similar geometry on the higher dimensions. If one of the datasets is rank 0 and the geometry of the other is rank 1, then the lower rank dataset is promoted before appending. If the first dataset is null and the second is non-null, then return the second dataset.
ds1 - null or a dataset of length m.
ds2 - dataset of length n to be concatenated.
a dataset length m+n.
#merge(org.das2.qds.QDataSet, org.das2.qds.QDataSet) merge(ds1,ds2), which will interleave to preserve monotonic.
#append(org.das2.qds.QDataSet, org.das2.qds.QDataSet)
<a name="concatenate-java.lang.Object-java.lang.Object->
concatenate( java.lang.Object ds1, java.lang.Object ds2 ) → QDataSet
QDataSet
<a name="contour-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
contour( QDataSet tds, QDataSet vv ) → QDataSet
contour the data in rank 2 table tds at rank 0 vv. The result is a rank 2 bundle of [:,'x,y,z'] where i is the contour number. The result will have DEPEND_0 be an monotonically increasing sequence with jumps indicating new contours.
tds - rank 2 table
vv - rank 2 bundle
QDataSet
<a name="contour-java.lang.Object-java.lang.Object->
contour( java.lang.Object tds, java.lang.Object vv ) → QDataSet
QDataSet
<a name="convertPropertyValue-org.das2.qds.QDataSet-String-java.lang.Object->
convertPropertyValue( QDataSet context, java.lang.String name, java.lang.Object value ) → java.lang.Object
convert the object into the type needed for the property.
context - the dataset to which we are assigning the value.
name - the property name
value - the value
the correct value.
org.autoplot.jythonsupport.PyQDataSet#convertPropertyValue
<a name="convertUnitsTo-org.das2.qds.QDataSet-Units->
convertUnitsTo( QDataSet ds, Units u ) → QDataSet
convert the dataset to the target units
ds - the original dataset.
u - units of the new dataset
a new dataset with all the same properties but with the new units.
<a name="convertUnitsTo-DatumRange-Units->
convertUnitsTo( DatumRange dr, Units u ) → DatumRange
convert the datumRange to the given units, which must be convertible.
dr - the datum range, e.g. '5 to 50 MHz'
u - the new units. e.g. 'Hz'
DatumRange in the new units, e.g. '5000000 to 50000000 Hz'
<a name="convertUnitsTo-Datum-Units->
convertUnitsTo( Datum d, Units u ) → Datum
convert the datum to the given units, which must be convertible.
d - the datum, e.g. '5 MHz'
u - the new units, e.g. 'Hz'
Datum in the new units, e.g. '5000000 Hz'
<a name="copy-org.das2.qds.QDataSet->
copy( QDataSet src ) → WritableDataSet
copy the dataset to make a new one that is writable. When a join dataset is copied, a WritableJoinDataSet is used to copy each dataset. This is a deep copy, so for example DEPEND_0 is copied as well. Note that BufferDataSets will be copied to BufferDataSets, and ArrayDataSets will be copied to ArrayDataSets.
src -
a copy of src.
<a name="copyIndexedProperties-org.das2.qds.QDataSet-MutablePropertyDataSet->
copyIndexedProperties( QDataSet srcds, MutablePropertyDataSet mds ) → void
copy over all the indexed properties into the mutable property dataset. This was introduced to support DataSetOps.unbundle, but should probably always be used. See https://sourceforge.net/p/autoplot/bugs/1704/
srcds - the source dataset
mds - the destination dataset
void
<a name="copyProperties-org.das2.qds.QDataSet->
copyProperties( QDataSet ds ) → java.util.Map
copies the properties, copying depend datasets as well.
TODO: This is not thorough, and this needs to be reviewed.
ds - the data from which the properties are extracted.
a map of the properties.
DataSetUtil#getProperties(org.das2.qds.QDataSet)
<a name="copysign-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
copysign( QDataSet magnitude, QDataSet sign ) → QDataSet
Returns the first floating-point argument with the sign of the second floating-point argument.
magnitude -
sign -
QDataSet
<a name="copysign-java.lang.Object-java.lang.Object->
copysign( java.lang.Object x, java.lang.Object y ) → QDataSet
QDataSet
<a name="cos-org.das2.qds.QDataSet->
cos( QDataSet ds ) → QDataSet
element-wise cos.
ds -
QDataSet
<a name="cos-java.lang.Object->
cos( java.lang.Object ds ) → QDataSet
QDataSet
<a name="cosh-org.das2.qds.QDataSet->
cosh( QDataSet ds ) → QDataSet
element-wise cosh.
ds -
QDataSet
<a name="cosh-java.lang.Object->
cosh( java.lang.Object ds ) → QDataSet
QDataSet
<a name="createEvent-String-int-String->
createEvent( java.lang.String timeRange, int rgbcolor, java.lang.String annotation ) → QDataSet
tool for creating ad-hoc events datasets.
timeRange - a timerange like "2010-01-01" or "2010-01-01/2010-01-10" or "2010-01-01 through 2010-01-09"
rgbcolor - and RGB color like 0xFF0000 (red), 0x00FF00 (green), or 0x0000FF (blue),
annotation - label for event, possibly including granny codes.
a rank 2 QDataSet with startTime, stopTime, rgbColor, annotation
<a name="createEvent-org.das2.qds.QDataSet-String-int-String->
createEvent( QDataSet append, java.lang.String timeRange, int rgbcolor, java.lang.String annotation ) → QDataSet
tool for creating ad-hoc events datasets.
append - null or a dataset to append the result. This events dataset must have [starttime, endtime, RBG color, string] for each record.
timeRange - a timerange like "2010-01-01" or "2010-01-01/2010-01-10" or "2010-01-01 through 2010-01-09"
rgbcolor - an RGB color like 0xFF0000 (red), 0x00FF00 (green), or 0x0000FF (blue).
annotation - label for event, possibly including granny codes.
a rank 2 QDataSet with startTime, stopTime, rgbColor, annotation
<a name="createEvent-org.das2.qds.QDataSet-DatumRange-int-String->
createEvent( QDataSet append, DatumRange dr, int rgbcolor, java.lang.String annotation ) → QDataSet
tool for creating ad-hoc events datasets. For example
append - null or a dataset to append the result. This events dataset must have [starttime, endtime, RBG color, string] for each record.
dr - a datum range
rgbcolor - an RGB color like 0xFF0000 (red), 0x00FF00 (green), or 0x0000FF (blue)
annotation - label for event, possibly including granny codes.
a rank 2 QDataSet with startTime, stopTime, rgbColor, annotation
<a name="createEvents-org.das2.qds.QDataSet->
createEvents( QDataSet vds ) → QDataSet
make canonical rank 2 bundle dataset of min,max,color,text This was originally part of EventsRenderer, but it became clear that this was generally useful.
vds - dataset in a number of forms that can be converted to an events dataset.
rank 2 QDataSet [ index; 4( time, stopTime, rgbColor, label ) ]
<a name="createEvents-org.das2.qds.QDataSet-Color->
createEvents( QDataSet vds, java.awt.Color deftColor ) → QDataSet
make canonical rank 2 bundle dataset of min,max,color,text This was originally part of EventsRenderer, but it became clear that this was generally useful.
vds - dataset in a number of forms that can be converted to an events dataset.
deftColor - the color to use as the default color.
rank 2 QDataSet [ index; 4( time, stopTime, rgbColor, label ) ]
<a name="cubicRoot-org.das2.qds.QDataSet->
cubicRoot( QDataSet coefficients ) → QDataSet
Solves each of a set of cubic equations of the form: ax^3 + bx^2 + c*x + d = 0. Takes a rank 2 dataset with each equation across the first dimension and coefficients of each equation across the second.
coefficients - Set of all coefficients.
Roots of each equation. Double.NaN is returned for complex roots.
<a name="cubicRoot-double-double-double-double->
cubicRoot( double a, double b, double c, double d ) → double[]
Enter the coefficients for a cubic of the form: ax^3 + bx^2 + c*x + d = 0. Based on the method described at http://www.1728.org/cubic2.htm.
a - Coefficient of x^3.
b - Coefficient of x^2.
c - Coefficient of x.
d - Constant.
Array containing 3 roots. NaN will be returned for imaginary roots.
<a name="cumulativeMax-org.das2.qds.QDataSet->
cumulativeMax( QDataSet ds ) → QDataSet
for each element i of ds, set the result[i] to the maximum of ds[0:(i+1)]
ds - rank 1 dataset
the cumulative maximum
<a name="cumulativeMin-org.das2.qds.QDataSet->
cumulativeMin( QDataSet ds ) → QDataSet
for each element i of ds, set the result[i] to the minimum of ds[0:(i+1)]
ds - rank 1 dataset
the cumulative minimum
<a name="dataIntersection-int[]-int[]->
dataIntersection( int[] itE, int[] itB ) → int[]
return the values which occur in both rank 1 datasets. Each dataset is sorted.
itE - a bunch of values.
itB - a bunch of values.
the set of values found in both.
#eventsConjunction(org.das2.qds.QDataSet, org.das2.qds.QDataSet)
<a name="dataIntersection-org.das2.qds.QDataSet-org.das2.qds.QDataSet->
dataIntersection( QDataSet tE, QDataSet tB ) → QDataSet
return the values which occur in both rank 1 datasets. Each dataset is sorted.
tE - a bunch of values.
tB - a bunch of values.
the set of values found in both.
<a name="dataset-java.lang.Object->
dataset( java.lang.Object arg0 ) → QDataSet
coerce Java objects like arrays Lists and scalars into a QDataSet.
This is introduced to mirror the useful Jython dataset command. This is a nasty business that
is surely going to cause all sorts of problems, so we should do it all in one place.
See http://jfaden.net:8080/hudson/job/autoplot-test029/
This supports:
- int, float, double, etc to Rank 0 datasets
- List<Number> to Rank 1 datasets.
- Java arrays of Number to Rank 1-4 qubes datasets
- Strings to rank 0 datasets with units ("5 s" or "2014-01-01T00:00")
- Datums to rank 0 datasets
- DatumRanges to rank 1 bins
arg0 - null,QDataSet,Number,Datum,DatumRange,String,List,or array.
QDataSet
<a name="dataset-java.lang.Object-Units->
dataset( java.lang.Object arg0, Units u ) → QDataSet
coerce Java objects like arrays Lists and scalars into a QDataSet.
This is introduced to mirror the useful Jython dataset command. This is a nasty business that
is surely going to cause all sorts of problems, so we should do it all in one place.
See http://jfaden.net:8080/hudson/job/autoplot-test029/
This supports:
- int, float, double, etc to Rank 0 datasets
- List<Number> to Rank 1 datasets.
- Java arrays of Number to Rank 1-4 qubes datasets
- Strings to rank 0 datasets with units ("5 s" or "2014-01-01T00:00")
- Datums to rank 0 datasets
- DatumRanges to rank 1 bins
arg0 - null,QDataSet,Number,Datum,DatumRange,String,List,or array.
u - units providing context
QDataSet