-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathinference_job.py
153 lines (127 loc) · 4.95 KB
/
inference_job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
import argparse
from sagemaker.pytorch import PyTorchProcessor
from sagemaker.processing import ProcessingInput, ProcessingOutput
"""
Running inferene using the SageMaker processing job
python inference_job.py
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="inference job")
parser.add_argument(
"--model_uri", required=True,
type=str, help="S3 model prefix"
)
parser.add_argument(
"--mode", default='val', type=str, help="only supports two modes: train, val"
)
parser.add_argument(
"--sm_role", required=True,
type=str,
help="SageMaker role id, e.g.AmazonSageMaker-ExecutionRole-2021xxxx"
)
parser.add_argument(
"--ppm_model_fn",
default="aro_ppm_train_model.joblib",
type=str,
help="File name of the PPM model"
)
parser.add_argument(
"--s3_prefix",
required=True,
type=str,
help="S3 prefix of the data uri, including the bucket name"
)
parser.add_argument(
"--processed_dfn",
required=True,
type=str,
help="name of the pre-processed file, e.g. lmc_route_full_1637316909.parquet"
)
args = parser.parse_args()
my_base_job_name = 'ppm-rollout'
my_inst_type = 'ml.m5.4xlarge'
processed_dfn = args.processed_dfn
if args.mode == 'val':
prefix_dir = 'Final_June_18_Data'
#processed_dfn = 'lmc_route_full_1637316909.parquet'
elif args.mode == 'train':
prefix_dir = 'Final_March_15_Data'
#processed_dfn = 'lmc_route_full_1627030750.parquet'
else:
raise Exception(f'unknown mode {args.mode}')
processor = PyTorchProcessor(
framework_version='1.7.1',
py_version='py3',
role=args.sm_role,
instance_count=1,
instance_type=my_inst_type,
base_job_name=my_base_job_name,
max_runtime_in_seconds=3600 * 24 * 4
)
sm_local_input = '/opt/ml/processing/input'
sm_local_output = '/opt/ml/processing/output'
model_dir_local = f'{sm_local_input}/models'
pi_model = ProcessingInput(
source=args.model_uri,
destination=model_dir_local)
data_dir_local = f'{sm_local_input}/data'
pi_data = ProcessingInput(
source=f'{args.s3_prefix}/{prefix_dir}/processed/',
destination=data_dir_local
)
dist_matrix_dir_local = f'{sm_local_input}/distance_matrix'
pi_dist_matrix = ProcessingInput(
source=f'{args.s3_prefix}/{prefix_dir}/distance_matrix/',
destination=dist_matrix_dir_local
)
zone_list_dir_local = f'{sm_local_input}/zone_list'
pi_zone_list = ProcessingInput(
source=f'{args.s3_prefix}/{prefix_dir}/zone_list/',
destination=zone_list_dir_local
)
model_score_dir_local = f'{sm_local_input}/model_score'
pi_model_score = ProcessingInput(
source=f'{args.s3_prefix}/{prefix_dir}/model_score_inputs/',
destination=model_score_dir_local
)
model_apply_dir_local = f'{sm_local_input}/model_apply_input'
pi_model_apply = ProcessingInput(
source=f'{args.s3_prefix}/{prefix_dir}/model_apply_inputs/',
destination=model_apply_dir_local
)
output_dir_local = f'{sm_local_output}/submission'
po_data = ProcessingOutput(
source=output_dir_local,
destination=f'{args.s3_prefix}/{prefix_dir}/model_apply_outputs'
)
output_score_local = f'{sm_local_output}/score'
po_score = ProcessingOutput(
source=output_score_local,
destination=f'{args.s3_prefix}/{prefix_dir}/model_score_outputs'
)
pargs = []
pargs.append(f"--model_dir {model_dir_local}")
pargs.append(f"--ppm_model_fn {args.ppm_model_fn}")
pargs.append(f"--data_dir {data_dir_local}")
pargs.append(f"--data_fn {processed_dfn}")
pargs.append(f"--dist_matrix_dir {dist_matrix_dir_local}")
pargs.append(f"--zone_list_dir {zone_list_dir_local}")
pargs.append(f"--model_score_input_dir {model_score_dir_local}")
pargs.append("--actual_seq_fn eval_actual_sequences.json")
pargs.append("--invalid_seq_fn eval_invalid_sequence_scores.json")
pargs.append(f"--model_apply_input_dir {model_apply_dir_local}")
pargs.append("--travel_time_fn eval_travel_times.json")
pargs.append(f"--output_dir {output_dir_local}")
pargs.append(f"--output_score_dir {output_score_local}")
parguments = " ".join(pargs).split()
deps = ["aro"]
processor.run(code="inference.py",
source_dir='.',
dependencies=deps,
inputs=[pi_model, pi_data, pi_dist_matrix, pi_zone_list,
pi_model_score, pi_model_apply],
outputs=[po_data, po_score],
wait=False, logs=False,
arguments=parguments)