No property tester for TestCaseElement for property projectNature
\n",
- "
I20080613-2000; ; Not sure if this belongs to JDT/Debug or Platform/Debug.; ; I saw this error message several times today in my error log but Im not yet sure how to reproduce it.; ; -- Error Details --; Date: Sun Jul 06 16:04:00 CEST 2008; Message: No property tester contributes a property org.eclipse.debug.ui.projectNature to type class org.eclipse.jdt.internal.junit.model.TestCaseElement; Severity: Error; Plugin: org.eclipse.core.expressions
\n",
- "
\n",
- "
\n",
- "
44129
\n",
- "
395007
\n",
- "
P3
\n",
- "
UI
\n",
- "
[package explorer] Refresh action not available on Java package folders
\n",
- "
M3.; ; F5 (Refresh) is available as a context menu entry for ordinary source folders but not for Java package folders in the e4 Java Package explorer.; ; Please restore the 3.x functionality.
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Issue_id Priority Component \\\n",
- "38438 239715 P3 UI \n",
- "44129 395007 P3 UI \n",
- "\n",
- " Title \\\n",
- "38438 No property tester for TestCaseElement for property projectNature \n",
- "44129 [package explorer] Refresh action not available on Java package folders \n",
- "\n",
- " Description \n",
- "38438 I20080613-2000; ; Not sure if this belongs to JDT/Debug or Platform/Debug.; ; I saw this error message several times today in my error log but Im not yet sure how to reproduce it.; ; -- Error Details --; Date: Sun Jul 06 16:04:00 CEST 2008; Message: No property tester contributes a property org.eclipse.debug.ui.projectNature to type class org.eclipse.jdt.internal.junit.model.TestCaseElement; Severity: Error; Plugin: org.eclipse.core.expressions \n",
- "44129 M3.; ; F5 (Refresh) is available as a context menu entry for ordinary source folders but not for Java package folders in the e4 Java Package explorer.; ; Please restore the 3.x functionality. "
- ]
- },
- "execution_count": 22,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"file = \"eclipse_jdt.csv\"\n",
"file = f\"{BASE_DIR}/data/jdt-bugs-dataset/eclipse_jdt.csv.gz\" ### real location\n",
@@ -234,155 +147,31 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
11811
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
Issue_id
\n",
- "
33113
\n",
- "
\n",
- "
\n",
- "
Priority
\n",
- "
P3
\n",
- "
\n",
- "
\n",
- "
Component
\n",
- "
Debug
\n",
- "
\n",
- "
\n",
- "
Title
\n",
- "
Evaluating for loop suspends in URLClassLoader
\n",
- "
\n",
- "
\n",
- "
Description
\n",
- "
Debug to a breakpoint in some HelloWorld program. In the DisplayView; highlight and ; Display the following code snippet:; ; for (int i = 0; i < 10; i++) {; System.out.println(i);; }; ; Instead of just reporting No explicit return value; the debugger suspends in the ; URLClassLoader; apparently trying to load the class int. You have hit Resume several ; more times before the evaluation completes. The DebugView does not indicate why it ; has stopped (the thread is just labelled Evaluating). This behavior does not happen if ; you turn of the Suspend on uncaught exceptions preference.
\n",
- "
\n",
- "
\n",
- "
Status
\n",
- "
VERIFIED
\n",
- "
\n",
- "
\n",
- "
Resolution
\n",
- "
FIXED
\n",
- "
\n",
- "
\n",
- "
Version
\n",
- "
2.1
\n",
- "
\n",
- "
\n",
- "
Created_time
\n",
- "
2003-02-25 15:40:00 -0500
\n",
- "
\n",
- "
\n",
- "
Resolved_time
\n",
- "
2003-03-05 17:11:17 -0500
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " 11811\n",
- "Issue_id 33113 \n",
- "Priority P3 \n",
- "Component Debug \n",
- "Title Evaluating for loop suspends in URLClassLoader \n",
- "Description Debug to a breakpoint in some HelloWorld program. In the DisplayView; highlight and ; Display the following code snippet:; ; for (int i = 0; i < 10; i++) {; System.out.println(i);; }; ; Instead of just reporting No explicit return value; the debugger suspends in the ; URLClassLoader; apparently trying to load the class int. You have hit Resume several ; more times before the evaluation completes. The DebugView does not indicate why it ; has stopped (the thread is just labelled Evaluating). This behavior does not happen if ; you turn of the Suspend on uncaught exceptions preference.\n",
- "Status VERIFIED \n",
- "Resolution FIXED \n",
- "Version 2.1 \n",
- "Created_time 2003-02-25 15:40:00 -0500 \n",
- "Resolved_time 2003-03-05 17:11:17 -0500 "
- ]
- },
- "execution_count": 23,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
+ "import pandas as pd\n",
+ "\n",
"df = df.drop(columns=['Duplicated_issue']) ###\n",
- "pd.set_option('display.max_colwidth', -1)\n",
+ "pd.set_option('display.max_colwidth', None)\n",
"df.sample(1, random_state=123).T"
]
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAFgCAYAAABdW3q3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+20lEQVR4nO3df1jUZb7/8dcAguAPBkehVdf0pKDJipg1Fsv6IzR33ZUT/ipOJhepQZuxSZod1m9l2Z4V3UU0ycrMvGQtTDet1j2xZcdVV722VclMLK1M97A6DJiG4OB8//DM5Aj+GNJBvZ+P6+oy7s/7c3/u23s+9vLTPTMWt9vtFgAAAHCdC2ruAQAAAACBQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARQpp7ANcKh+MbmfTlzhaLZLO1MW7epmK9zcJ6m4X1Noup6+2Z98UQfC+R2y2jXkAeps7bVKy3WVhvs7DeZmG9G8dWBwAAABiB4AsAAAAjEHwBAABghO8dfEtKShQXF6fExMQGx3bv3q2MjAwlJiaqf//+evjhh3Xw4MFG+1m+fLmGDx+u+Ph4DRkyRAsXLtSpU6ca1DkcDs2YMUN2u10JCQkaN26ctmzZ0mifmzdv1rhx45SQkCC73a4ZM2bI4XB8vwkDAADgmvS9gm9FRYV++9vfKjo6usGxzz//XOPHj9epU6dUUFCg5557Tl988YXS09NVWVnpU1tUVKTZs2dr2LBhWrJkidLT0/XCCy9o1qxZPnV1dXXKyMjQli1blJeXp0WLFslms2nixInatm2bT+22bds0adIk2Ww2LVq0SHl5edq8ebMyMjJUV1f3faYNAACAa9D3+lSHJ598Uv3795fVatWf//xnn2OFhYUKDQ3V4sWL1bp1a0lS7969ddddd2nJkiWaNm2aJMnpdKqoqEhjx47V1KlTJUl2u10ul0sFBQWaMGGCunfvLunM0+Xy8nKtXLnS+4TZbrcrNTVV+fn5Kikp8V5/zpw56tq1qwoLCxUScmaanTt31r333qtVq1YpPT39+0wdAAAA15gmP/F96623tG3bNj311FMNjrlcLm3YsEHDhg3zhl5J6tSpk+x2u0pLS71tGzduVG1trdLS0nz6SEtLk9vt9qktLS1Vt27dfLZVhISEaOTIkdq1a5cqKioknXkSXVZWptTUVG/olaR+/fqpa9euPn0CAADADE0Kvg6HQ88995xyc3N1ww03NDj+1Vdf6eTJk4qLi2twLDY2Vl9++aVqa2slSfv27fO2ny06OlpRUVHe457axvr0tHlqy8vLfdrPrfUcBwAAgDmatNXh6aefVrdu3c67XaCqqkqSZLVaGxyzWq1yu92qrq5WdHS0qqqqFBoaqoiIiAa1kZGR3r48/UZGRjZad/Z1Pb82Vmu1Wn36vFQWi9+nXNM88zVt3qZivc3CepuF9TaLqet9qfP1O/j++c9/1vvvv68//vGPslzkKhc6fvaxi/XTlD4vVOvP9Twu5WvwrkemzttUrLdZWG+zsN5mYb0b51fwPXHihGbNmqXx48crOjpax44dkyTvx44dO3ZMISEh3ie9TqezQR9VVVWyWCxq27atpDNPYGtra1VTU6Pw8HCf2urqasXHx3t/Pt/T2urqaknfPeH1XL+x2vM9Nb4YU7/z2rR5m4r1bh5BQZYm/UX8+7JYJKu1laqqTjTLervdbp0+zQstULi/zWLqenvmfTF+BV+n06mjR4/qlVde0SuvvNLg+K233qo777xThYWFatmyZaN7acvLy3XjjTcqLCxM0nd7e8vLy5WQkOCtO3LkiJxOp3r06OFti42NPW+fkry1nj737t2rgQMHNqg9dz/xpTD1O69NnbepWO/ACQqyqG1khEKCm+97hKzWVs1yXVf9aVVXfUv4DTDub7Ow3o3zK/h26NBBr732WoP2F198Udu3b9dLL72kqKgohYSEaPDgwXrvvfc0bdo07yc7HD58WFu3blVGRob33OTkZIWFhWn16tU+wXfNmjWyWCxKSUnxtqWkpOjpp5/Wzp07vbUul0tr165VQkKCYmJiJEkxMTHq06eP1q1bpwceeEDBwcGSpB07dujAgQOaMGGCP9MGgMsuKMiikOAg5az8hz771/HmHk7AdI9urfn3JCooyELwBRBwfgXfsLAw2e32Bu1r1qxRcHCwz7EpU6Zo9OjRysrK0qRJk1RXV6fCwkJFRUUpMzPTW2e1WpWdna358+fLarUqKSlJZWVlWrBggcaMGeP9DF9JGj16tIqLi5WTk6Pc3FzZbDYVFxfrwIEDWrp0qc+YHnvsMWVmZionJ0fp6elyOByaN2+eYmNjNWrUKH+mDQBXzGf/Oq7dh4819zAAwAjf6wssLuSmm27S8uXLNXfuXOXk5Cg4OFgDBgzQ888/r3bt2vnUZmdnq1WrVlqxYoWWLFmiDh06aPLkycrKyvKpCw0N1auvvqr8/Hw9++yzqqmpUa9evfTSSy/ptttu86m12+168cUXVVhYqKysLIWHh2vQoEGaPn26QkNDr9S0AQAAcJWyuN3sALkUR4+at0m8ffs2xs3bVKx34IWEBCkqqpVGFG406olv745t9c4jyXI6T8jlOt3cwzEC97dZTF1vz7wvpvneVQEAAAAEEMEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARQvwp3rNnj37/+9+rvLxclZWVatmypbp166b09HSlpqZ662bMmKE1a9Y0OL9bt25av359g/bly5drxYoV+vrrrxUdHa20tDQ9+OCDatGihU+dw+FQfn6+PvjgA508eVI9e/bUr371K91+++0N+ty8ebPmz5+vTz/9VC1bttTgwYM1bdo02Ww2f6YMAACA64RfwffYsWO64YYbNGLECMXExKimpkbr1q3T9OnTdejQIT300EPe2pYtW2rZsmU+57ds2bJBn0VFRZo/f74mT56spKQklZWVqaCgQBUVFXrmmWe8dXV1dcrIyNCxY8eUl5cnm82mFStWaOLEiVq6dKluu+02b+22bds0adIkDRw4UIsWLZLD4dDcuXOVkZGhN998U6Ghof5MGwAAANcBv4Kv3W6X3W73aRs8eLC+/vprvfHGGz7BNygoSH379r1gf06nU0VFRRo7dqymTp3qvYbL5VJBQYEmTJig7t27S5JKSkpUXl6ulStXKjEx0Vubmpqq/Px8lZSUePudM2eOunbtqsLCQoWEnJli586dde+992rVqlVKT0/3Z9oAAAC4DlyWPb5RUVEKDg72+7yNGzeqtrZWaWlpPu1paWlyu90qLS31tpWWlqpbt27e0CtJISEhGjlypHbt2qWKigpJUkVFhcrKypSamuoNvZLUr18/de3a1adPAAAAmMOvJ74ep0+f1unTp3Xs2DH96U9/0l//+lfNnDnTp+bkyZNKSkpSZWWlOnTooJSUFD3yyCOyWq3emn379kmSYmNjfc6Njo5WVFSU97in9pZbbmkwlri4OO/xmJgYlZeX+7SfW/vRRx81ZcqyWJp02jXLM1/T5m0q1hvNgddbYHB/m8XU9b7U+TYp+D711FN6/fXXJUktWrRQXl6e7rnnHu/xnj17qmfPnurRo4ekM3tuly1bpi1btmjVqlVq1aqVJKmqqkqhoaGKiIhocI3IyEhVVVV5f66qqlJkZGSjdZ7jZ//aWK3VavXp0x82W5smnXetM3XepmK9EShRUa2aewjG4f42C+vduCYF36ysLI0ZM0aVlZV6//339cwzz6impkYPPPCAJCkjI8OnPikpSTfffLMeeeQRlZSU+By3+PFXkgvVnnvsfLX+XO9sDsc3crubdOo1yWI5c9OYNm9Tsd6BFxwcZHT4czpPqL7+dHMPwwjc32Yxdb09876YJgXfjh07qmPHjpKkgQMHSpJ+97vf6e6771a7du0aPWfo0KGKiIjQjh07vG1Wq1W1tbWqqalReHi4T311dbXi4+N9aht7WltdXS3puye8nq0UjdWe76nxpXC7ZdQLyMPUeZuK9UYg8VoLLO5vs7Dejbssb27r06ePXC6XDh48eME6t9utoKDvLunZ2+vZl+tx5MgROZ1O71YJT+25dWef66n19Ll3795Ga8/dTwwAAAAzXJbgu3XrVgUFBemHP/zheWvWr1+vmpoaJSQkeNuSk5MVFham1atX+9SuWbNGFotFKSkp3raUlBTt379fO3fu9La5XC6tXbtWCQkJiomJkSTFxMSoT58+Wrdunerr6721O3bs0IEDBzR06NDvPV8AAABce/za6jBz5ky1bt1aP/rRj9S+fXs5nU6tX79e7777rh544AG1a9dOhw4dUm5urkaMGKEuXbrIYrFo+/btWrZsmXr06KExY8Z4+7NarcrOztb8+fNltVq9X2CxYMECjRkzxvsZvpI0evRoFRcXKycnR7m5ubLZbCouLtaBAwe0dOlSn3E+9thjyszMVE5OjtLT0+VwODRv3jzFxsZq1KhR3/O3DAAAANciv4Jv3759tXr1aq1Zs0bffPONIiIi1LNnT82ZM8f7lcWtW7dW+/bttXTpUjkcDtXX16tTp04aP368srKyGnyCQ3Z2tlq1aqUVK1ZoyZIl6tChgyZPnqysrCyfutDQUL366qvKz8/Xs88+q5qaGvXq1UsvvfSSz7e2SWe+2OLFF19UYWGhsrKyFB4erkGDBmn69Ol8axsAAIChLG43W58vxdGj5r07sn37NsbN21Ssd+CFhJz5VIcRhRu1+/Cx5h5OwPTu2FbvPJIsp/OEXC4+1SEQuL/NYup6e+Z9MZdljy8AAABwtSP4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIAR/Aq+e/bs0eTJkzVo0CD16dNHt912m8aNG6e33nqrQe3u3buVkZGhxMRE9e/fXw8//LAOHjzYaL/Lly/X8OHDFR8fryFDhmjhwoU6depUgzqHw6EZM2bIbrcrISFB48aN05YtWxrtc/PmzRo3bpwSEhJkt9s1Y8YMORwOf6YLAACA64hfwffYsWO64YYb9Oijj+rFF1/Ub3/7W3Xq1EnTp0/XokWLvHWff/65xo8fr1OnTqmgoEDPPfecvvjiC6Wnp6uystKnz6KiIs2ePVvDhg3TkiVLlJ6erhdeeEGzZs3yqaurq1NGRoa2bNmivLw8LVq0SDabTRMnTtS2bdt8ardt26ZJkybJZrNp0aJFysvL0+bNm5WRkaG6ujp/f48AAABwHQjxp9hut8tut/u0DR48WF9//bXeeOMNPfTQQ5KkwsJChYaGavHixWrdurUkqXfv3rrrrru0ZMkSTZs2TZLkdDpVVFSksWPHaurUqd5ruFwuFRQUaMKECerevbskqaSkROXl5Vq5cqUSExO9tampqcrPz1dJSYl3THPmzFHXrl1VWFiokJAzU+zcubPuvfderVq1Sunp6X7/RgEAAODadln2+EZFRSk4OFiS5HK5tGHDBg0bNswbeiWpU6dOstvtKi0t9bZt3LhRtbW1SktL8+kvLS1Nbrfbp7a0tFTdunXzhl5JCgkJ0ciRI7Vr1y5VVFRIkioqKlRWVqbU1FRv6JWkfv36qWvXrj59AgAAwBx+PfH1OH36tE6fPq1jx47pT3/6k/76179q5syZkqSvvvpKJ0+eVFxcXIPzYmNjtWnTJtXW1iosLEz79u3ztp8tOjpaUVFR3uOStG/fPt1yyy0N+vRcZ9++fYqJiVF5eblP+7m1H330UVOmLIulSaddszzzNW3epmK90Rx4vQUG97dZTF3vS51vk4LvU089pddff12S1KJFC+Xl5emee+6RJFVVVUmSrFZrg/OsVqvcbreqq6sVHR2tqqoqhYaGKiIiokFtZGSkty9Pv5GRkY3WnX1dz6+N1VqtVp8+/WGztWnSedc6U+dtKtYbgRIV1aq5h2Ac7m+zsN6Na1LwzcrK0pgxY1RZWan3339fzzzzjGpqavTAAw94aywXiN5nH7tQ3YXOu9ix89X6c72zORzfyO1u0qnXJIvlzE1j2rxNxXoHXnBwkNHhz+k8ofr60809DCNwf5vF1PX2zPtimhR8O3bsqI4dO0qSBg4cKEn63e9+p7vvvtv7pNfpdDY4r6qqShaLRW3btpV05glsbW2tampqFB4e7lNbXV2t+Ph478/ne1pbXV0t6bsnvJ7rN1Z7vqfGl8LtllEvIA9T520q1huBxGstsLi/zcJ6N+6yvLmtT58+crlcOnjwoLp06aKWLVt699qerby8XDfeeKPCwsIkfbe399zaI0eOyOl0qkePHt622NjY8/YpyVvr6XPv3r2N1p67nxgAAABmuCzBd+vWrQoKCtIPf/hDhYSEaPDgwXrvvfd0/Phxb83hw4e1detWDR061NuWnJyssLAwrV692qe/NWvWyGKxKCUlxduWkpKi/fv3a+fOnd42l8ultWvXKiEhQTExMZKkmJgY9enTR+vWrVN9fb23dseOHTpw4IDP9QEAAGAOv7Y6zJw5U61bt9aPfvQjtW/fXk6nU+vXr9e7776rBx54QO3atZMkTZkyRaNHj1ZWVpYmTZqkuro6FRYWKioqSpmZmd7+rFarsrOzNX/+fFmtViUlJamsrEwLFizQmDFjvJ/hK0mjR49WcXGxcnJylJubK5vNpuLiYh04cEBLly71Gedjjz2mzMxM5eTkKD09XQ6HQ/PmzVNsbKxGjRr1fX6/AAAAcI2yuN2XvgPkzTff1OrVq/X555/rm2++UUREhHr27KnRo0crNTXVp/bjjz/W3LlztWPHDgUHB2vAgAF6/PHH1aVLlwb9vvbaa1qxYoUOHTqkDh06KC0tTVlZWWrRooVP3dGjR5Wfn68NGzaopqZGvXr1Uk5Oju64444GfW7atEmFhYXas2ePwsPDNWjQIE2fPl02m+1Sp3vOtc3bJN6+fRvj5m0q1jvwQkLOvLltROFG7T58rLmHEzC9O7bVO48ky+k8IZeLN7cFAve3WUxdb8+8L1rnT/A1makvINPmbSrWO/AIvgTfQOH+Noup632pwfey7PEFAAAArnYEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwQog/xVu2bNHatWv1j3/8Q//7v/+rNm3aKD4+Xr/85S8VHx/vrZsxY4bWrFnT4Pxu3bpp/fr1DdqXL1+uFStW6Ouvv1Z0dLTS0tL04IMPqkWLFj51DodD+fn5+uCDD3Ty5En17NlTv/rVr3T77bc36HPz5s2aP3++Pv30U7Vs2VKDBw/WtGnTZLPZ/JkyAAAArhN+Bd8//OEPqqqq0v3336/u3bursrJSS5cu1bhx4/Tyyy/7BNCWLVtq2bJlPue3bNmyQZ9FRUWaP3++Jk+erKSkJJWVlamgoEAVFRV65plnvHV1dXXKyMjQsWPHlJeXJ5vNphUrVmjixIlaunSpbrvtNm/ttm3bNGnSJA0cOFCLFi2Sw+HQ3LlzlZGRoTfffFOhoaH+TBsAAADXAb+C75NPPtngiWlycrKGDRumxYsX+wTfoKAg9e3b94L9OZ1OFRUVaezYsZo6daokyW63y+VyqaCgQBMmTFD37t0lSSUlJSovL9fKlSuVmJjorU1NTVV+fr5KSkq8/c6ZM0ddu3ZVYWGhQkLOTLFz58669957tWrVKqWnp/szbQAAAFwH/Nrj29g2gVatWummm27SP//5T78vvnHjRtXW1iotLc2nPS0tTW63W6Wlpd620tJSdevWzRt6JSkkJEQjR47Url27VFFRIUmqqKhQWVmZUlNTvaFXkvr166euXbv69AkAAABz+PXEtzHffPONPvnkEw0YMMCn/eTJk0pKSlJlZaU6dOiglJQUPfLII7Jard6affv2SZJiY2N9zo2OjlZUVJT3uKf2lltuaXD9uLg47/GYmBiVl5f7tJ9b+9FHHzVpnhZLk067Znnma9q8TcV6oznwegsM7m+zmLrelzrf7x18n376adXU1CgrK8vb1rNnT/Xs2VM9evSQdGbP7bJly7RlyxatWrVKrVq1kiRVVVUpNDRUERERDfqNjIxUVVWV9+eqqipFRkY2Wuc5fvavjdVarVafPv1hs7Vp0nnXOlPnbSrWG4ESFdWquYdgHO5vs7DejftewbegoEDr1q3TzJkzfT7VISMjw6cuKSlJN998sx555BGVlJT4HLf48VeSC9Wee+x8tf5c72wOxzdyu5t06jXJYjlz05g2b1Ox3oEXHBxkdPhzOk+ovv50cw/DCNzfZjF1vT3zvpgmB9+FCxeqqKhIjz76qO67776L1g8dOlQRERHasWOHt81qtaq2tlY1NTUKDw/3qa+urvYJ0+d7WltdXS3puye8nq0UjdWe76nxpXC7ZdQLyMPUeZuK9UYg8VoLLO5vs7DejWvSF1gsXLhQCxYs0JQpU3y2OFyM2+1WUNB3l/Ts7fXsy/U4cuSInE6nd6uEp/bcurPP9dR6+ty7d2+jtefuJwYAAIAZ/A6+zz//vBYsWKDs7Gw9/PDDl3ze+vXrVVNTo4SEBG9bcnKywsLCtHr1ap/aNWvWyGKxKCUlxduWkpKi/fv3a+fOnd42l8ultWvXKiEhQTExMZKkmJgY9enTR+vWrVN9fb23dseOHTpw4ICGDh3q75QBAABwHfBrq8Mrr7yiwsJCJScna9CgQT7bFiSpb9++OnTokHJzczVixAh16dJFFotF27dv17Jly9SjRw+NGTPGW2+1WpWdna358+fLarV6v8BiwYIFGjNmjPczfCVp9OjRKi4uVk5OjnJzc2Wz2VRcXKwDBw5o6dKlPuN47LHHlJmZqZycHKWnp8vhcGjevHmKjY3VqFGjmvDbBAAAgGudX8H3gw8+kHTm83c3btzY4PjevXvVunVrtW/fXkuXLpXD4VB9fb06deqk8ePHKysrq8EnOGRnZ6tVq1ZasWKFlixZog4dOmjy5MkNtlCEhobq1VdfVX5+vp599lnV1NSoV69eeumll3y+tU0688UWL774ogoLC5WVlaXw8HANGjRI06dP51vbAAAADGVxu9n6fCmOHjXv3ZHt27cxbt6mYr0DLyTkzKc6jCjcqN2HjzX3cAKmd8e2eueRZDmdJ+Ry8akOgcD9bRZT19sz74tp0pvbAAAAgGsNwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjOBX8N2yZYueeOIJDR8+XH379lVycrKys7P18ccfN6jdvXu3MjIylJiYqP79++vhhx/WwYMHG+13+fLlGj58uOLj4zVkyBAtXLhQp06dalDncDg0Y8YM2e12JSQkaNy4cdqyZUujfW7evFnjxo1TQkKC7Ha7ZsyYIYfD4c90AQAAcB3xK/j+4Q9/0KFDh3T//ffrxRdfVF5eniorKxsE0M8//1zjx4/XqVOnVFBQoOeee05ffPGF0tPTVVlZ6dNnUVGRZs+erWHDhmnJkiVKT0/XCy+8oFmzZvnU1dXVKSMjQ1u2bFFeXp4WLVokm82miRMnatu2bT6127Zt06RJk2Sz2bRo0SLl5eVp8+bNysjIUF1dnb+/RwAAALgOhPhT/OSTT8pms/m0JScna9iwYVq8eLFuv/12SVJhYaFCQ0O1ePFitW7dWpLUu3dv3XXXXVqyZImmTZsmSXI6nSoqKtLYsWM1depUSZLdbpfL5VJBQYEmTJig7t27S5JKSkpUXl6ulStXKjEx0Vubmpqq/Px8lZSUeMc0Z84cde3aVYWFhQoJOTPFzp07695779WqVauUnp7u928UAAAArm1+PfE9N/RKUqtWrXTTTTfpn//8pyTJ5XJpw4YNGjZsmDf0SlKnTp1kt9tVWlrqbdu4caNqa2uVlpbm02daWprcbrdPbWlpqbp16+YNvZIUEhKikSNHateuXaqoqJAkVVRUqKysTKmpqd7QK0n9+vVT165dffoEAACAOb73m9u++eYbffLJJ+rRo4ck6auvvtLJkycVFxfXoDY2NlZffvmlamtrJUn79u3ztp8tOjpaUVFR3uOe2sb69LR5asvLy33az631HAcAAIBZ/Nrq0Jinn35aNTU1ysrKkiRVVVVJkqxWa4Naq9Uqt9ut6upqRUdHq6qqSqGhoYqIiGhQGxkZ6e3L029kZGSjdWdf1/NrY7VWq9WnT39YLE067Zrlma9p8zYV643mwOstMLi/zWLqel/qfL9X8C0oKNC6des0c+ZMxcfHnzOA84/g7GMXqrvQeRc7dr5af653NputTZPOu9aZOm9Tsd4IlKioVs09BONwf5uF9W5ck4PvwoULVVRUpEcffVT33Xeft93zpNfpdDY4p6qqShaLRW3btvXW1tbWqqamRuHh4T611dXVPmH6fE9rq6urJX33hNdz/cZqz/fU+FI4HN/I7W7Sqdcki+XMTWPavE3FegdecHCQ0eHP6Tyh+vrTzT0MI3B/m8XU9fbM+2KaFHwXLlyoBQsWaMqUKd4tDh5dunRRy5YtG91LW15erhtvvFFhYWGSvtvbW15eroSEBG/dkSNH5HQ6vfuGPbXn61OSt9bT5969ezVw4MAGtefuJ75UbreMegF5mDpvU7HeCCRea4HF/W0W1rtxfr+57fnnn9eCBQuUnZ2thx9+uMHxkJAQDR48WO+9956OHz/ubT98+LC2bt2qoUOHetuSk5MVFham1atX+/SxZs0aWSwWpaSkeNtSUlK0f/9+7dy509vmcrm0du1aJSQkKCYmRpIUExOjPn36aN26daqvr/fW7tixQwcOHPC5PgAAAMzh1xPfV155RYWFhUpOTtagQYO0Y8cOn+N9+/aVJE2ZMkWjR49WVlaWJk2apLq6OhUWFioqKkqZmZneeqvVquzsbM2fP19Wq1VJSUkqKyvTggULNGbMGO9n+ErS6NGjVVxcrJycHOXm5spms6m4uFgHDhzQ0qVLfcbx2GOPKTMzUzk5OUpPT5fD4dC8efMUGxurUaNG+flbBAAAgOuBxe2+9Afh48ePb/AtaWfbu3ev998//vhjzZ07Vzt27FBwcLAGDBigxx9/XF26dGlw3muvvaYVK1bo0KFD6tChg9LS0pSVlaUWLVr41B09elT5+fnasGGDampq1KtXL+Xk5OiOO+5o0OemTZtUWFioPXv2KDw8XIMGDdL06dMb/SziS3H0qHl7Zdq3b2PcvE3FegdeSMiZPb4jCjdq9+FjzT2cgOndsa3eeSRZTucJuVzs8Q0E7m+zmLrennlftM6f4GsyU19Aps3bVKx34BF8Cb6Bwv1tFlPX+1KD7/f+AgsAAADgWkDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAj+B18jx8/rjlz5igzM1MDBgxQXFycFixY0KBuxowZiouLa/DP8OHDG+13+fLlGj58uOLj4zVkyBAtXLhQp06dalDncDg0Y8YM2e12JSQkaNy4cdqyZUujfW7evFnjxo1TQkKC7Ha7ZsyYIYfD4e+UAQAAcB0I8feEqqoqvfHGG+rZs6dSUlJUUlJy3tqWLVtq2bJlDdrOVVRUpPnz52vy5MlKSkpSWVmZCgoKVFFRoWeeecZbV1dXp4yMDB07dkx5eXmy2WxasWKFJk6cqKVLl+q2227z1m7btk2TJk3SwIEDtWjRIjkcDs2dO1cZGRl68803FRoa6u/UAQAAcA3zO/h26tRJ27dvl8ViUWVl5QWDb1BQkPr27XvB/pxOp4qKijR27FhNnTpVkmS32+VyuVRQUKAJEyaoe/fukqSSkhKVl5dr5cqVSkxM9NampqYqPz/fZyxz5sxR165dVVhYqJCQM9Ps3Lmz7r33Xq1atUrp6en+Th0AAADXML+3OlgsFlkslss2gI0bN6q2tlZpaWk+7WlpaXK73SotLfW2lZaWqlu3bt7QK0khISEaOXKkdu3apYqKCklSRUWFysrKlJqa6g29ktSvXz917drVp08AAACY4Yq+ue3kyZNKSkpSr1699JOf/ESzZs1SVVWVT82+ffskSbGxsT7t0dHRioqK8h731MbFxTW4jqfNU1teXu7Tfm6t5zgAAADM4fdWh0vVs2dP9ezZUz169JB0Zs/tsmXLtGXLFq1atUqtWrWSdGbPcGhoqCIiIhr0ERkZ6ROUq6qqFBkZ2Wid5/jZvzZWa7VaG4TvS3EZH3JfEzzzNW3epmK90Rx4vQUG97dZTF3vS53vFQu+GRkZPj8nJSXp5ptv1iOPPKKSkhKf4/5snbhQ7bnHzlfblK0aNlsbv8+5Hpg6b1Ox3giUqKhWzT0E43B/m4X1btwVC76NGTp0qCIiIrRjxw5vm9VqVW1trWpqahQeHu5TX11drfj4eJ/axp7WVldXS/ruCa/VapWkRmvP99T4YhyOb+R2+33aNctiOXPTmDZvU7HegRccHGR0+HM6T6i+/nRzD8MI3N9mMXW9PfO+mIAGX0lyu90KCvpua7Fnb295ebkSEhK87UeOHJHT6fRulfDUNrY/19PmqfX0uXfvXg0cOLBB7bn7iS9t3DLqBeRh6rxNxXojkHitBRb3t1lY78YF9Jvb1q9fr5qaGp+Am5ycrLCwMK1evdqnds2aNbJYLEpJSfG2paSkaP/+/dq5c6e3zeVyae3atUpISFBMTIwkKSYmRn369NG6detUX1/vrd2xY4cOHDigoUOHXqkpAgAA4CrVpCe+H374oWpqanTixAlJ0meffab169dLkgYOHKjKykrl5uZqxIgR6tKliywWi7Zv365ly5apR48eGjNmjLcvq9Wq7OxszZ8/X1ar1fsFFgsWLNCYMWO8n+ErSaNHj1ZxcbFycnKUm5srm82m4uJiHThwQEuXLvUZ42OPPabMzEzl5OQoPT1dDodD8+bNU2xsrEaNGtWUaQMAAOAaZnG7/X8QPmTIEB06dKjRY3/5y1/Upk0b5eXl6ZNPPpHD4VB9fb06deqklJQUZWVlqU2bhnswXnvtNa1YsUKHDh1Shw4dlJaWpqysLLVo0cKn7ujRo8rPz9eGDRtUU1OjXr16KScnR3fccUeDPjdt2qTCwkLt2bNH4eHhGjRokKZPny6bzebvlHX0qHl7Zdq3b2PcvE3FegdeSMiZPb4jCjdq9+FjzT2cgOndsa3eeSRZTucJuVzs8Q0E7m+zmLrennlftK4pwddEpr6ATJu3qVjvwCP4EnwDhfvbLKau96UG34Du8QUAAACaC8EXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIAR/A6+x48f15w5c5SZmakBAwYoLi5OCxYsaLR29+7dysjIUGJiovr376+HH35YBw8ebLR2+fLlGj58uOLj4zVkyBAtXLhQp06dalDncDg0Y8YM2e12JSQkaNy4cdqyZUujfW7evFnjxo1TQkKC7Ha7ZsyYIYfD4e+UAQAAcB3wO/hWVVXpjTfeUF1dnVJSUs5b9/nnn2v8+PE6deqUCgoK9Nxzz+mLL75Qenq6KisrfWqLioo0e/ZsDRs2TEuWLFF6erpeeOEFzZo1y6eurq5OGRkZ2rJli/Ly8rRo0SLZbDZNnDhR27Zt86ndtm2bJk2aJJvNpkWLFikvL0+bN29WRkaG6urq/J02AAAArnEh/p7QqVMnbd++XRaLRZWVlSopKWm0rrCwUKGhoVq8eLFat24tSerdu7fuuusuLVmyRNOmTZMkOZ1OFRUVaezYsZo6daokyW63y+VyqaCgQBMmTFD37t0lSSUlJSovL9fKlSuVmJjorU1NTVV+fr7PWObMmaOuXbuqsLBQISFnptm5c2fde++9WrVqldLT0/2dOgAAAK5hfj/xtVgsslgsF6xxuVzasGGDhg0b5g290pnQbLfbVVpa6m3buHGjamtrlZaW5tNHWlqa3G63T21paam6devmDb2SFBISopEjR2rXrl2qqKiQJFVUVKisrEypqane0CtJ/fr1U9euXX36BAAAgBn8fuJ7Kb766iudPHlScXFxDY7FxsZq06ZNqq2tVVhYmPbt2+dtP1t0dLSioqK8xyVp3759uuWWWxr06bnOvn37FBMTo/Lycp/2c2s/+ugjv+d0kax/3fHM17R5m4r1RnPg9RYY3N9mMXW9L3W+VyT4VlVVSZKsVmuDY1arVW63W9XV1YqOjlZVVZVCQ0MVERHRoDYyMtLbl6ffyMjIRuvOvq7n18ZqrVarT5+XymZr4/c51wNT520q1huBEhXVqrmHYBzub7Ow3o27IsHX40JbIs4+drGtE03p80K1/lzPw+H4Rm6336ddsyyWMzeNafM2FesdeMHBQUaHP6fzhOrrTzf3MIzA/W0WU9fbM++LuSLB1/Ok1+l0NjhWVVUli8Witm3bemtra2tVU1Oj8PBwn9rq6mrFx8f79NvY09rq6mpJ3z3h9Vy/sdrzPTW+GLdbRr2APEydt6lYbwQSr7XA4v42C+vduCvyBRZdunRRy5YtvXttz1ZeXq4bb7xRYWFhkr7b23tu7ZEjR+R0OtWjRw9vW2xs7Hn7lOSt9fS5d+/eRmvP3U8MAACA698VCb4hISEaPHiw3nvvPR0/ftzbfvjwYW3dulVDhw71tiUnJyssLEyrV6/26WPNmjWyWCw+nxWckpKi/fv3a+fOnd42l8ultWvXKiEhQTExMZKkmJgY9enTR+vWrVN9fb23dseOHTpw4IDP9QEAAGCGJm11+PDDD1VTU6MTJ05Ikj777DOtX79ekjRw4ECFh4drypQpGj16tLKysjRp0iTV1dWpsLBQUVFRyszM9PZltVqVnZ2t+fPny2q1KikpSWVlZVqwYIHGjBnj/QxfSRo9erSKi4uVk5Oj3Nxc2Ww2FRcX68CBA1q6dKnPGB977DFlZmYqJydH6enpcjgcmjdvnmJjYzVq1KimTBsAAADXMIvb7f8OkCFDhujQoUONHvvLX/6izp07S5I+/vhjzZ07Vzt27FBwcLAGDBigxx9/XF26dGlw3muvvaYVK1bo0KFD6tChg9LS0pSVlaUWLVr41B09elT5+fnasGGDampq1KtXL+Xk5OiOO+5o0OemTZtUWFioPXv2KDw8XIMGDdL06dNls9n8nbKOHjVvk3j79m2Mm7epWO/ACwk58+a2EYUbtfvwseYeTsD07thW7zySLKfzhFwu3twWCNzfZjF1vT3zvmhdU4KviUx9AZk2b1Ox3oFH8CX4Bgr3t1lMXe9LDb5XZI8vAAAAcLUh+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEa5Y8N26davi4uIa/WfHjh0+tbt371ZGRoYSExPVv39/Pfzwwzp48GCj/S5fvlzDhw9XfHy8hgwZooULF+rUqVMN6hwOh2bMmCG73a6EhASNGzdOW7ZsuRJTBQAAwDUg5EpfYOrUqbLb7T5tPXr08P77559/rvHjx6tXr14qKChQbW2tCgsLlZ6errfeekvt2rXz1hYVFWn+/PmaPHmykpKSVFZWpoKCAlVUVOiZZ57x1tXV1SkjI0PHjh1TXl6ebDabVqxYoYkTJ2rp0qW67bbbrvS0AQAAcJW54sH3xhtvVN++fc97vLCwUKGhoVq8eLFat24tSerdu7fuuusuLVmyRNOmTZMkOZ1OFRUVaezYsZo6daokyW63y+VyqaCgQBMmTFD37t0lSSUlJSovL9fKlSuVmJjorU1NTVV+fr5KSkqu4IwBAABwNWrWPb4ul0sbNmzQsGHDvKFXkjp16iS73a7S0lJv28aNG1VbW6u0tDSfPtLS0uR2u31qS0tL1a1bN2/olaSQkBCNHDlSu3btUkVFxRWcFQAAAK5GV/yJ76xZszR16lS1bNlSiYmJys7OVv/+/SVJX331lU6ePKm4uLgG58XGxmrTpk2qra1VWFiY9u3b520/W3R0tKKiorzHJWnfvn265ZZbGvTpuc6+ffsUExPj1zwsFr/Kr3me+Zo2b1Ox3mgOvN4Cg/vbLKau96XO94oF3zZt2uj++++X3W6X1WrVl19+qSVLluj+++/X4sWLlZycrKqqKkmS1WptcL7VapXb7VZ1dbWio6NVVVWl0NBQRURENKiNjIz09iVJVVVVioyMbLTOc9xfNlsbv8+5Hpg6b1Ox3giUqKhWzT0E43B/m4X1btwVC74333yzbr75Zu/P/fv319ChQ/WLX/xC+fn5Sk5O9h6zXCCmn33sQnUXOs+fY+fjcHwjt9vv065ZFsuZm8a0eZuK9Q684OAgo8Of03lC9fWnm3sYRuD+Noup6+2Z98Vc8a0OZ2vbtq0GDRqklStX6uTJk94nvU6ns0FtVVWVLBaL2rZtK+nME+Da2lrV1NQoPDzcp7a6ulrx8fHen61Wa6NPdaurqyWp0afBF+N2y6gXkIep8zYV641A4rUWWNzfZmG9GxfwN7e5/28VLBaLunTpopYtW6q8vLxBXXl5uW688UaFhYVJ+m5v77m1R44ckdPp9PmItNjY2PP2Kfl+nBoAAADMENDgW11drQ0bNqhXr14KCwtTSEiIBg8erPfee0/Hjx/31h0+fFhbt27V0KFDvW3JyckKCwvT6tWrffpcs2aNLBaLUlJSvG0pKSnav3+/du7c6W1zuVxau3atEhIS/H5jGwAAAK59V2yrQ25urn7wgx8oPj5eUVFR+vLLL/XKK6/I4XDov/7rv7x1U6ZM0ejRo5WVlaVJkyaprq5OhYWFioqKUmZmprfOarUqOztb8+fPl9Vq9X6BxYIFCzRmzBjvZ/hK0ujRo1VcXKycnBzl5ubKZrOpuLhYBw4c0NKlS6/UlAEAAHAVu2LBNy4uTu+++65Wrlypb7/9VpGRkbrllls0Z84c9enTx1t30003afny5Zo7d65ycnIUHBysAQMG6Pnnn/f51jZJys7OVqtWrbRixQotWbJEHTp00OTJk5WVleVTFxoaqldffVX5+fl69tlnVVNTo169eumll17iW9sAAAAMZXG72fp8KY4eNe/dke3btzFu3qZivQMvJOTMpzqMKNyo3YePNfdwAqZ3x7Z655FkOZ0n5HLxqQ6BwP1tFlPX2zPvi2nWb24DAAAAAoXgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQL6lcUALiwoyKKgIEuzXT84uHn+Lnz6tFunTxv09mMAQLMg+AJXiaAgiyKtEQpppvApSVFRrZrluq7606qu+pbwCwC4ogi+wFUiKMiikOAg5az8hz771/GLn3Cd6B7dWvPvSVRQkIXgCwC4ogi+wFXms38dN+oLDQAACBTe3AYAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEvrL4KhcUZFFQkKXZrh8c3Dx/Nzp92q3Tp93Ncm0AuBL48xxofgTfq1hQkEWR1giFNNMfVpIUFdWqWa7rqj+t6qpv+cMSwHWBP8/58xxXB4LvVSwoyKKQ4CDlrPyHPvvX8eYeTsB0j26t+fckKijIwh+UAK4L/HnOn+e4OhB8rwGf/eu4dh8+1tzDAAB8T/x5DjSv6/rNbSdOnNDs2bP14x//WD/60Y+Umpqqd955p7mHBQAAgGZwXT/xnTJlisrKypSbm6uuXbvq7bff1tSpU3X69Gn94he/aO7hAQAAIICu2+D74YcfatOmTZo3b55+/vOfS5IGDBigw4cPa86cOfrZz36m4ODgZh4lAAAAAuW6Db7vvfeeIiIiNHz4cJ/2tLQ05ebmaufOnerXr18zjQ4AAFzP+Pi6q9N1G3z37dunm266SSEhvlOMi4vzHif4AgCAy42Pr7t6P77uug2+VVVV6ty5c4P2yMhI73F/BAVJ7mZaw94d2yo81JxtGf/W/rubNei6fvtl41hvs7DeZmG9zeD5+LoXNnyuw9U1zT2cgOkYGa6sQTf935PuwIYmyyU+XL9ug68kWS7wu3ChY41p167N9x1Ok80ZndBs125OzfW31ebGepuF9TYL622WrEE3NfcQmsXVvN7X7d+/rFZro091q6urJX335BcAAABmuG6Db2xsrD7//HO5XC6f9vLycklSjx49mmNYAAAAaCbXbfBNSUnRt99+q//+7//2aV+zZo2io6OVkGDm/24CAAAw1XW7x3fgwIFKSkrSU089pePHj6tLly565513tHHjRuXn5/MZvgAAAIaxuN3N9VkFV96JEyf0+9//XuvXr1dVVZX+7d/+TQ8++KBGjBjR3EMDAABAgF3XwRcAAADwuG73+AIAAABnI/gCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPDFJXE6ndq+fXtzDwMBcurUKR0+fLi5h4HL5NSpUzp9+rRP26effqo//elP+uSTT5ppVAikEydO6O6779bu3bubeyi4wk6fPq39+/friy++EJ9Y2xDBF5dk27Ztuv/++5t7GLgM3nrrLd11113q06ePRo0apQ8++KBBzSeffKI777yzGUaHy6m+vl4zZ85UYmKi+vbtq4KCAknSs88+q7vvvluPPvqoRo0apalTpzYIxrj2VFVVnfefyspK7dmzR//617+8bbi2vfvuu6qurvZpW7VqlZKSkjRixAj99Kc/VVJSkv74xz82zwCvUtftVxYDaOhvf/ubHn/8ccXFxennP/+5/v73v+uhhx5SZmampk2b1tzDw2W2cuVKlZSU6Kc//amioqK0bNkyWSwWvf7665o6dar69Omjv/3tb3rxxRd1yy236D/+4z+ae8j4Hm6//faL1jz00EPef9+zZ8+VHA6usNzcXL3++uvq06ePJOn999/Xr3/9a918883KzMyU2+3Wu+++qyeeeEIxMTGX9PowAcHXcE888cQl1fG/va8Pixcv1qBBg7Ro0SIFBQWpvr5ehYWFWrx4sU6cOKGnnnqquYeIy2jVqlW677779Otf/1qS1L9/fz322GOaOHGiJk2aJEmy2+2qrKzU2rVrCb7XOLfbrZiYGKWlpSk4ONjn2MmTJ/Xyyy/r3//939WpU6dmGiEup3O3Mbz88svq27evVqxY4V3/zMxM3XPPPXrllVcIvv+H4Gu4NWvWKDQ0tMEfkufif4NeH8rLyzV79mwFBZ3Z5RQcHKxHH31UnTt31pNPPimXy6Vnn322mUeJy+XgwYOaOnWq9+cf//jHOn36tAYMGOBT95Of/ERvv/12oIeHy+yVV17RzJkz9eGHH2r27Nnq1auX99g333yjl19+WWlpabr11lubcZS4Uj755BPNnj3b57/nISEhuu+++/Sb3/ymGUd2dSH4Gi46Olp33nmnnnzyyQvWrV+/Xo8++miARoUrpaamRuHh4Q3ax4wZo6CgIM2cOVP19fUaO3ZsM4wOl1t9fb1atGjh/blVq1aSpMjISJ+6tm3bqra2NqBjw+V3xx13aN26dZo7d67Gjh2rjIwMTZkyRaGhoc09NASAy+XSD37wgwbtHTt21IkTJ5phRFcngq/hbr755kva52WxWAIwGlxpnTp10qeffiq73d7g2KhRoyRJM2fOVHl5eaCHhivAZrPpn//8p/fn4OBgTZ06VTfccINPXUVFhaxWa4BHhyshIiJC/+///T/97Gc/U15env785z9r1qxZ6t27d3MPDVfA22+/rb///e+SpDZt2ujIkSMNao4eParWrVsHemhXLYKv4eLi4vTaa69dtK5du3bq379/AEaEK+nWW2/V22+/rQkTJjR6fNSoUbJYLN49obi29ezZU9u2bdPdd9/tbZs8eXKDuu3btysuLi6QQ8MV1r9/f61du1YFBQWaOHGihg4dygOM69C5//3etGmT7rrrLp+2jz76SDfeeGMgh3VVI/ga7tFHH72kLQy33nqrli9fHoAR4UoaNWqUwsLCVFlZqXbt2jVak5aWpvDwcP3P//xPgEeHy+3Xv/61vv3224vWtW/fXoMGDbryA0JAhYWF6fHHH9dPf/pT/ed//ief6Xqd+ctf/tKgrbFtLSEhIWxfO4vFzZ1gvJMnT6q0tFSHDx9WVFSU7rzzzvOGIlz7WG+zsN5mYb3NcvZ6t2vXTkOGDGG9L4Lga7iKigrdd999+vrrr71PA9q0aaOXXnpJffv2bd7B4bJjvc3CepuF9TYL6900BF/DPfHEE3rnnXc0ceJEJSQk6Msvv9QLL7yg6Ohovu3lOsR6m4X1NgvrbRbWu2nY42u4zZs368EHH9Qvf/lLb1uXLl2UnZ2to0ePqn379s04OlxurLdZWG+zsN5mYb2bJqi5B4DmdfTo0QYfZn7bbbfJ7Xbr6NGjzTQqXCmst1lYb7Ow3mZhvZuG4Gu4+vp6tWzZ0qctLCzMewzXF9bbLKy3WVhvs7DeTcNWB2j//v0+X3HouWH279/foJYPQb/2sd5mYb3NwnqbhfX2H29uM1zPnj0b/VBzt9vt0+75+VK+5Q1XL9bbLKy3WVhvs7DeTcMTX8P95je/ae4hIIBYb7Ow3mZhvc3CejcNT3wBAABgBN7cBgAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAY4f8DnEhHtJDX58wAAAAASUVORK5CYII=",
- "text/plain": [
- "
Regression in TypeHierarchyPerfTest#testOpenObjectHierarchy() I20110329-0800; ; http://download.eclipse.org/eclipse/downloads/drops/I20110329-0800/performance/eplnx2/Scenario415.html; ; The regression can be seen on all platforms.; ; Also TypeHierarchyPerfTest#testOpenCollHierarchy() shows erratic behavior on all platforms.
\n",
- "
\n",
- "
\n",
- "
30486
\n",
- "
P3
\n",
- "
introduce indirection: misleading warning about duplicate method 3.2 M5 testing; ; have two classes; Foo and Bar; Foo with method m; refactor introduce indirection on m; warning: duplicate method m in declaring class (ok); change declaring class to Bar; ; the warning is still there; despite that Bar does not contain any methods; expected: the warning goes away as the declaring class is changed
Variable view show old instance using build 20020917; ; Step to reproduce:; 1) create a selfhosting workspace (20020917).; 2) put a breakpoint in CompletionEngine at line 774 ; CompilationUnitDeclaration parsedUnit = parser.dietParse(...).; 3) create a launch configuration Runtime Workbench.; 4) launch this configuration in debugger.; 5) create a Java project.; 6) create a class.; 7) do ctrl+space in editor to hit breakpoint.; 8) look the id of the parser field of CompletionEngine in the variable view .; 9) step into parser.dietParse(...).; 10) in variable view the id of the parser is the same as step 8.; 11) do resume.; 12) do ctrl+space in editor to hit breakpoint.; 13) the id of the parser field is the same as step 8 (but it should not be the ; same instance of CompletionParser).; 14) step into parser.dietParse(...).; 15) the id of parser is a new id (as expected).; ; It seems that variable view doesnt show the right instance in the step 13.
\n",
- "
P1
\n",
- "
P1
\n",
- "
\n",
- "
\n",
- "
34854
\n",
- "
model proxy created for Java debug target in var view While investigating bug 177910; I found that the deltas for thread creation were duplicated in the output produced by Walter. I discovered that two model proxies are created for Java debug targets because the JavaModelProxyFactory does not limit the creation of proxies for targets to the debug view (as it should).
\n",
- "
P2
\n",
- "
P2
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " text \\\n",
- "8461 Variable view show old instance using build 20020917; ; Step to reproduce:; 1) create a selfhosting workspace (20020917).; 2) put a breakpoint in CompletionEngine at line 774 ; CompilationUnitDeclaration parsedUnit = parser.dietParse(...).; 3) create a launch configuration Runtime Workbench.; 4) launch this configuration in debugger.; 5) create a Java project.; 6) create a class.; 7) do ctrl+space in editor to hit breakpoint.; 8) look the id of the parser field of CompletionEngine in the variable view .; 9) step into parser.dietParse(...).; 10) in variable view the id of the parser is the same as step 8.; 11) do resume.; 12) do ctrl+space in editor to hit breakpoint.; 13) the id of the parser field is the same as step 8 (but it should not be the ; same instance of CompletionParser).; 14) step into parser.dietParse(...).; 15) the id of parser is a new id (as expected).; ; It seems that variable view doesnt show the right instance in the step 13. \n",
- "34854 model proxy created for Java debug target in var view While investigating bug 177910; I found that the deltas for thread creation were duplicated in the output produced by Walter. I discovered that two model proxies are created for Java debug targets because the JavaModelProxyFactory does not limit the creation of proxies for targets to the debug view (as it should). \n",
- "\n",
- " actual predicted \n",
- "8461 P1 P1 \n",
- "34854 P2 P2 "
- ]
- },
- "execution_count": 29,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"## Create a dataframe combining the Title and Description, \n",
"## Actual and Predicted values that we can explore\n",
@@ -960,67 +452,9 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
text
\n",
- "
actual
\n",
- "
predicted
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
40065
\n",
- "
Too many semicolons after constructor completion I20090611-1540; ; public class Try {; Object m() {; return null;; }; }; ; select null; type new Runna; Ctrl+Space; press Enter to select the anonymous proposal for Runnable(); ; => Result:; ; public class Try {; Object m() {; return new Runnable() {; ; public void run() {; // TODO Auto-generated method stub; ; }; };;;; };
\n",
- "
P2
\n",
- "
P3
\n",
- "
\n",
- "
\n",
- "
7178
\n",
- "
Next/Previous buttons have double image 20020606 XP; ; 1) Open Java editor; Outline; Search view; 2) Click in editor; click in outline; click in search; 3) Note that the show previous/ show next buttons have a double image.; Hover over the button and the imgae is corrected
\n",
- "
P2
\n",
- "
P3
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " text \\\n",
- "40065 Too many semicolons after constructor completion I20090611-1540; ; public class Try {; Object m() {; return null;; }; }; ; select null; type new Runna; Ctrl+Space; press Enter to select the anonymous proposal for Runnable(); ; => Result:; ; public class Try {; Object m() {; return new Runnable() {; ; public void run() {; // TODO Auto-generated method stub; ; }; };;;; }; \n",
- "7178 Next/Previous buttons have double image 20020606 XP; ; 1) Open Java editor; Outline; Search view; 2) Click in editor; click in outline; click in search; 3) Note that the show previous/ show next buttons have a double image.; Hover over the button and the imgae is corrected \n",
- "\n",
- " actual predicted \n",
- "40065 P2 P3 \n",
- "7178 P2 P3 "
- ]
- },
- "execution_count": 30,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"result[((result['actual'] == 'P1') | (result['actual'] == 'P2')) &\n",
" (result['actual'] != result['predicted'])].sample(2, random_state=33)"
@@ -1251,7 +685,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "blueprints",
"language": "python",
"name": "python3"
},
@@ -1265,7 +699,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.8"
+ "version": "3.12.8"
},
"toc": {
"base_numbering": 1,