-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_package_ScoreCardModel.py
60 lines (53 loc) · 2.14 KB
/
test_package_ScoreCardModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from sklearn import datasets
import pandas as pd
from ScoreCardModel.binning.discretization import Discretization
from ScoreCardModel.weight_of_evidence import WeightOfEvidence
from ScoreCardModel.models.logistic_regression_model import LogisticRegressionModel
from ScoreCardModel.score_card import ScoreCardModel
class MyLR(LogisticRegressionModel):
def predict(self, x):
x = self.pre_trade(x)
return self._predict_proba(x)
def pre_trade(self, x):
import numpy as np
result = []
for i, v in x.items():
t = self.ds[i].transform([v])[0]
r = self.woes[i].transform([t])[0]
result.append(r)
return np.array(result)
def _pre_trade_batch_row(self, row, Y, bins):
d = Discretization(bins)
d_row = d.transform(row)
woe = WeightOfEvidence()
woe.fit(d_row, Y)
return d, woe, woe.transform(d_row)
def pre_trade_batch(self, X, Y):
self.ds = {}
self.woes = {}
self.table = {}
self.ds["sepal length (cm)"], self.woes["sepal length (cm)"], self.table[
"sepal length (cm)"] = self._pre_trade_batch_row(
X["sepal length (cm)"], Y, [0, 2, 5, 8])
self.ds['sepal width (cm)'], self.woes['sepal width (cm)'], self.table[
'sepal width (cm)'] = self._pre_trade_batch_row(
X['sepal width (cm)'], Y, [0, 2, 2.5, 3, 3.5, 5])
self.ds['petal length (cm)'], self.woes['petal length (cm)'], self.table[
'petal length (cm)'] = self._pre_trade_batch_row(
X['petal length (cm)'], Y, [0, 1, 2, 3, 4, 5, 7])
self.ds['petal width (cm)'], self.woes['petal width (cm)'], self.table[
'petal width (cm)'] = self._pre_trade_batch_row(
X['petal width (cm)'], Y, [0, 1, 2, 3])
return pd.DataFrame(self.table)
iris = datasets.load_iris()
y = iris.target
z = (y == 0)
l = pd.DataFrame(iris.data, columns=iris.feature_names)
lr = MyLR()
lr.train(l, z)
lr.predict(l.loc[0].to_dict())
sc = ScoreCardModel(lr)
sc.predict(l.loc[0].to_dict())
sc_str = sc.dumps()
sc_l = ScoreCardModel.loads(sc_str)
sc_l.predict(l.loc[0].to_dict())