-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenoTSP.py
193 lines (158 loc) · 6.67 KB
/
genoTSP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import math
import random
import numpy as np
import operator
import pandas as pd
import matplotlib.pyplot as plt
from settings import *
class City:
def __init__(self, x, y):
self.x = x
self.y = y
def distance(self, city):
distX = abs(self.x - city.x)
distY = abs(self.y - city.y)
distance = np.sqrt(np.square(distX) + np.square(distY))
return distance
@property
def coordinates(self):
return "({}, {})".format(self.x, self.y)
def __repr__(self):
return "({}, {})".format(self.x, self.y)
class Fitness:
def __init__(self, route):
self.route = route
self.distance = 0
self.fitness = 0.0
def routeDistance(self):
totalDistance = 0
routeLength = len(self.route)
if routeLength != 0:
for i in range(routeLength):
sourceCity = self.route[i]
destinationCity = None
if i + 1 < routeLength:
destinationCity = self.route[i+1]
else:
destinationCity = self.route[0]
totalDistance += sourceCity.distance(destinationCity)
self.distance = totalDistance
return self.distance
def routefitness(self):
rDistance = self.routeDistance()
if rDistance != 0:
self.fitness = 1 / float(rDistance)
return self.fitness
def generateRoute(cityList):
route = random.sample(cityList, len(cityList))
return route
def createInitialPopulation(populationSize, cityList):
population = []
for i in range(populationSize):
population.append(generateRoute(cityList))
return population
def rankRoutes(population):
populationFitness = dict()
for i in range(len(population)):
populationFitness[i] = Fitness(population[i]).routefitness()
return sorted(populationFitness.items(), key=operator.itemgetter(1), reverse=True)
def selectBestRoutes(rankedRoutes, eliteSize, type=0):
selectionResults = []
# roulette wheel selection
if type == 0:
df = pd.DataFrame(np.array(rankedRoutes), columns=["Index","Fitness"])
df['cum_sum'] = df.Fitness.cumsum()
for i in range(eliteSize):
selectionResults.append(rankedRoutes[i][0])
for i in range(len(rankedRoutes) - eliteSize):
pick = random.uniform(min(df['cum_sum']), max(df['cum_sum']))
for i in range(len(rankedRoutes)):
if pick <= df.iat[i,2]:
selectionResults.append(rankedRoutes[i][0])
break
# tournament selection
else:
for i in range(eliteSize):
selectionResults.append(rankedRoutes[i][0])
for i in range(len(rankedRoutes) - eliteSize):
tournmentCandidates = dict()
k = int(len(rankedRoutes) * 0.25) # 25% of the total condidates in the route
for i in range(k):
index = random.randint(0, len(rankedRoutes) - 1)
tournmentCandidates[rankedRoutes[index][0]] = rankedRoutes[index][1]
sortedCandidates = sorted(tournmentCandidates.items(), key=operator.itemgetter(1), reverse=True)
selectionResults.append(sortedCandidates[0][0])
return selectionResults
def generatMatingPool(population, selectionResults):
matingPool = []
for i in range(len(selectionResults)):
selectionIndex = selectionResults[i]
matingPool.append(population[selectionIndex])
return matingPool
def breedIndivisuals(parent1, parent2):
child = []
childP1 = []
childP2 = []
startIndex = random.randint(0, len(parent1))
endIndex = random.randint(0, len(parent1))
startGene, endGene = min(startIndex, endIndex), max(startIndex, endIndex)
for i in range(startGene, endGene):
childP1.append(parent1[i])
childP2 = [gene for gene in parent2 if gene not in childP1]
child = childP1 + childP2
return child
def breedPopulation(matingPool, eliteSize):
children = []
newPopulationSize = len(matingPool) - eliteSize
for i in range(eliteSize):
children.append(matingPool[i])
for i in range(newPopulationSize):
child = breedIndivisuals(matingPool[i], matingPool[len(matingPool)-i-1])
children.append(child)
return children
def mutateIndivisual(indivisual, mutationRate):
for i in range(len(indivisual)):
if random.random() < mutationRate:
j = random.randint(0, len(indivisual) - 1)
indivisual[i], indivisual[j] = indivisual[j], indivisual[i]
return indivisual
def mutatePopulation(population, mutationRate):
mutatedPopulation = []
for i in range(len(population)):
mutatedIndivisual = mutateIndivisual(population[i], mutationRate)
mutatedPopulation.append(mutatedIndivisual)
return mutatedPopulation
def nextGeneration(currentGeneration, eliteSize, mutationRate):
rankedPopulation = rankRoutes(currentGeneration)
selectedRoutes = selectBestRoutes(rankedPopulation, eliteSize, selectionMethod)
matingPool = generatMatingPool(currentGeneration, selectedRoutes)
children = breedPopulation(matingPool, eliteSize)
nextGeneration = mutatePopulation(children, mutationRate)
return nextGeneration
def geneticAlgorithm(cityList, populationSize, eliteSize, mutationRate, numberOfgenerations):
progress = []
population = createInitialPopulation(populationSize, cityList)
print ("Initial distance : {}".format(1 / rankRoutes(population)[0][1]))
progress.append(1 / rankRoutes(population)[0][1])
for i in range(numberOfgenerations):
population = nextGeneration(population, eliteSize, mutationRate)
print ("Generation {} Distance : {}".format(i , 1 / rankRoutes(population)[0][1]))
progress.append(1 / rankRoutes(population)[0][1])
bestRouteInfo = rankRoutes(population)
print ("Final distance : {}".format(1 / bestRouteInfo[0][1]))
bestRoute = population[bestRouteInfo[0][0]]
print ("Best route : {}".format(str(bestRoute)))
plt.plot(progress)
plt.ylabel('Distance')
plt.xlabel('Generation')
plt.show()
def generateCityList():
cityList = []
for i in range(numberOfCities):
city = City(random.randint(0, maxYCoordinate), random.randint(0, maxYCoordinate))
cityList.append(city)
return cityList
if __name__ == '__main__':
random.seed(randomSeedValue)
cityList = generateCityList()
geneticAlgorithm(cityList, populationSize, eliteSize, mutationRate, generations)