-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkmeans.cpp
executable file
·164 lines (145 loc) · 5.06 KB
/
kmeans.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#include <iostream>
#include <cv.h>
#include <time.h>
#include "kmeans.h"
#include <stdlib.h>
using namespace std;
using namespace cv;
int min(Mat *data, Mat *min) {
double min_val0, min_val1, min_val2;
min_val0 = min_val1 = min_val2 = 10000;
for(int i = 0; i < data->rows; i++) {
if(min_val0 > data->at<double>( i, 0))
min_val0 = data->at<double>(i, 0);
if(min_val1 > data->at<double>( i, 1))
min_val1 = data->at<double>(i, 1);
if(min_val2 > data->at<double>( i, 2))
min_val2 = data->at<double>(i, 2);
}
min->at<double>(0,0) = min_val0;
min->at<double>(0,1) = min_val1;
min->at<double>(0,2) = min_val2;
return 0;
}
int max(Mat *data, Mat *max) {
double max_val0, max_val1, max_val2;
max_val0 = max_val1 = max_val2 = -10000;
for(int i = 0; i < data->rows; i++) {
if(max_val0 < data->at<double>( i, 0))
max_val0 = data->at<double>(i, 0);
if(max_val1 < data->at<double>( i, 1))
max_val1 = data->at<double>(i, 1);
if(max_val2 < data->at<double>( i, 2))
max_val2 = data->at<double>(i, 2);
}
max->at<double>(0,0) = max_val0;
max->at<double>(0,1) = max_val1;
max->at<double>(0,2) = max_val2;
return 0;
}
int fill_rand_matrix(Mat *centroid) {
for(int i = 0; i < centroid->rows; i++) {
for(int j = 0; j < centroid->cols; j++) {
centroid->at<double>(i,j) = (double)rand()/RAND_MAX;
// centroid->at<double>(i,j) = 1;
}
}
return 0;
}
int kmeans_1(double data[60][3], double k, int idx[60], double arr_centroid[8][3], double pCluster[8][1]) {
Mat cvdata(60, 3, CV_32F);
for(int i=0; i < 60; i++)
for(int j=0; j < 3; j++)
cvdata.at<float>(i,j) = data[i][j];
Mat centers;
Mat labels;
int m = 8;
cv::kmeans(cvdata, 8, labels, TermCriteria(CV_TERMCRIT_ITER, 100,0), 100, KMEANS_RANDOM_CENTERS, centers);
//printf("labels rows: %d cols: %d\n", labels.rows, labels.cols);
//printf("centers rows: %d cols: %d\n", centers.rows, centers.cols);
for(int i =0; i < 8; i++)
for(int j=0; j < 3; j++)
arr_centroid[i][j] = centers.at<float>(i,j);
return 0;
#if 0
Mat cvdata;
Mat data_min, data_max, data_diff;
Mat centroid(8, 3, CV_64FC1);
Mat pointsInCluster(8, 1, CV_64FC1);
double data_dim = 3, nbData = 60;
double rnum = 0, pos_diff = 1.0;
memset(idx, 0, sizeof(idx));
srand(time(NULL));
cvdata = Mat(60, 3, CV_64FC1, data);
data_min = Mat(1, 3, CV_64FC1);
data_max = Mat(1, 3, CV_64FC1);
data_diff = Mat(1, 3, CV_64FC1);
min(&cvdata, &data_min);
max(&cvdata, &data_max);
data_diff = data_max - data_min;
printf("%s %d\n", __FILE__, __LINE__);
fill_rand_matrix(¢roid);
for(int i = 0; i < centroid.rows; i++) {
centroid.row(i) = centroid.row(i).mul(data_diff);
centroid.row(i) = centroid.row(i) + data_min;
}
int xin = 0;
while(pos_diff > 0.0) {
xin++;
for(int d = 0; d < cvdata.rows; d++) {
Mat min_diff = cvdata.row(d) - centroid.row(1);
Mat mat_diff = min_diff * min_diff.t();
double min_diff_t = mat_diff.at<double>(0,0);
int curAssignment = 1;
for(int c=1; c < k; c++) {
Mat diff2c = cvdata.row(d) - centroid.row(c);
Mat mat_diff2c = diff2c * diff2c.t();
if(min_diff_t >= mat_diff2c.at<double>(0,0)) {
curAssignment = c;
min_diff_t = mat_diff2c.at<double>(0,0);
}
}
idx[d] = curAssignment;
}
Mat oldPositions = centroid.clone();
centroid.setTo(0);
pointsInCluster.setTo(0);
for(int d = 0; d < cvdata.rows; d++) {
centroid.row(idx[d]) += cvdata.row(d);
pointsInCluster.at<double>(idx[d],0) += 1;
}
for(int c = 0; c < k; c++) {
if(pointsInCluster.at<double>(c,0) != 0) {
centroid.row(c) = centroid.row(c) / pointsInCluster.at<double>(c,0);
} else {
Mat randx(1, 3, CV_64FC1);
fill_rand_matrix(&randx);
centroid.row(c) = randx.mul(data_diff) + data_min;
}
}
Mat posdiffMat = centroid - oldPositions;
pos_diff = sum(sum(posdiffMat.mul(posdiffMat)))[0];
printf("diff: %f %f\n", s, pos_diff);
if(xin > 14)
exit(0);
}
for(int i = 0; i < 8; i++) {
for(int j = 0; j < 3; j++) {
arr_centroid[i][j] = centroid.at<double>(i,j);
printf( " %f ", arr_centroid[i][j]);
}
pCluster[i][0] = pointsInCluster.at<double>(i,0);
printf("\n pcluster %f pos: %d\n ", pCluster[i][0], i);
}
printf("%s %d\n", __FILE__, __LINE__);
exit(0);
return 0;
#endif
}
#if 0
for(int i=0; i < oldPositions.rows; i++) {
for(int j=0; j < oldPositions.cols; j++)
printf(" %f ", oldPositions.at<double>(i,j));
printf("\n");
}
#endif