-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline_model_GPU.py
470 lines (406 loc) · 18.4 KB
/
baseline_model_GPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch import autograd
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import random
from random import shuffle
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import graph_results as plotter
import data_processor as parser
NUM_LABELS = 3
# convention: [NEG, NULL, POS]
epochs = 20
EMBEDDING_DIM = 50
HIDDEN_DIM = EMBEDDING_DIM
NUM_POLARITIES = 6
DROPOUT_RATE = 0.2
using_GPU = torch.cuda.is_available()
ERROR_ANALYSIS = False
set_name = "C"
datasets = {"A": {"filepath": "./data/new_annot/feature",
"filenames": ["new_train.json", "acl_dev_eval_new.json", "mpqa_new.json"],
"weights": torch.FloatTensor([0.8, 1.825, 1]),
"batch": 10},
"B": {"filepath": "./data/new_annot/trainsplit_holdtarg",
"filenames": ["train.json", "dev.json", "test.json"],
"weights": torch.FloatTensor([0.77, 1.766, 1]),
"batch": 10},
"C": {"filepath": "./data/final",
"filenames": ["C_train.json", "acl_dev_eval.json", "acl_test.json"],
"weights": torch.FloatTensor([1, 0.07, 1.26]),
"batch": 50},
"D": {"filepath": "./data/new_annot/feature",
"filenames": ["acl_dev_tune_new.json", "acl_dev_eval_new.json", "acl_test_new.json"],
"weights": torch.FloatTensor([2.7, 0.1, 1]),
"batch": 10},
"E": {"filepath": "./data/new_annot/feature",
"filenames": ["E_train.json", "acl_dev_eval.json", "acl_test.json"],
"weights": torch.FloatTensor([1, 0.3523, 1.0055]),
"batch": 25},
"F": {"filepath": "./data/new_annot/feature",
"filenames": ["F_train.json", "acl_dev_eval.json", "acl_test.json"],
"weights": torch.FloatTensor([1, 0.054569, 1.0055]),
"batch": 100},
"G": {"filepath": "./data/new_annot/feature",
"filenames": ["G_train.json", "acl_dev_eval_new.json", "acl_test_new.json"],
"weights": torch.FloatTensor([1.823, 0.0699, 1.0055]),
"batch": 100},
"H": {"filepath": "./data/new_annot/feature",
"filenames": ["H_train.json", "acl_dev_eval_new.json", "acl_test_new.json"],
"weights": torch.FloatTensor([1, 0.054566, 1.0055]),
"batch": 250},
}
BATCH_SIZE = datasets[set_name]["batch"]
# Decaying learning rate over time
# Run on GPU
class Model(nn.Module):
def __init__(self, num_labels, vocab_size, embeddings_size,
hidden_dim, word_embeddings, num_polarities, batch_size,
dropout_rate):
super(Model, self).__init__()
self.dropout = nn.Dropout(dropout_rate)
self.hidden_dim = hidden_dim
self.batch_size = batch_size
# Specify embedding layers
self.word_embeds = nn.Embedding(vocab_size, embeddings_size)
self.word_embeds.weight.data.copy_(torch.FloatTensor(word_embeddings))
# self.word_embeds.weight.requires_grad = False # don't update the embeddings
self.feature_embeds = nn.Embedding(num_polarities + 1, embeddings_size) # add 1 for <pad>
self.holder_target_embeds = nn.Embedding(5, embeddings_size) # add 2 for <pad> and <unk>
# The LSTM takes [word embeddings, feature embeddings] as inputs, and
# outputs hidden states with dimensionality hidden_dim.
self.lstm = nn.LSTM(3 * embeddings_size, hidden_dim, num_layers=2,
batch_first=True, bidirectional=True, dropout=dropout_rate)
# The linear layer that maps from hidden state space to target space
self.hidden2label = nn.Linear(2 * hidden_dim, num_labels)
# Matrix of weights for each layer
# Linear map from hidden layers to alpha for that layer
self.attention = nn.Linear(2 * hidden_dim, 1)
def forward(self, word_vec, feature_vec, holder_target_vec, lengths=None):
# Apply embeddings & prepare input
word_embeds_vec = self.word_embeds(word_vec)
feature_embeds_vec = self.feature_embeds(feature_vec)
ht_embeds_vec = self.holder_target_embeds(holder_target_vec)
#print(str(word_embeds_vec.size()) + " " + str(feature_embeds_vec.size()))
# [word embeddings, feature embeddings]
lstm_input = torch.cat((word_embeds_vec, feature_embeds_vec, ht_embeds_vec), 2)
# lstm_input = self.dropout(lstm_input)
# print(lstm_input.size())
# total_length = lstm_input.size(1) # get the max sequence length
# Mask out padding
if lengths is not None:
lengths = lengths.view(-1).tolist()
# print(lengths)
lstm_input = pack_padded_sequence(lstm_input, lengths, batch_first=True)
# print(lstm_input.data.size())
# Pass through lstm
lstm_out, _ = self.lstm(lstm_input)
if lengths is not None:
lstm_out = pad_packed_sequence(lstm_out, batch_first=True)[0]
# print(lstm_out)
# if you visualize the output, padding is all 0, so can unpack now and weighted padding is 0,
# contributing 0 to weighted_lstm_out
# lstm_out = self.dropout(lstm_out)
dimension = 1
# Compute and apply weights (attention) to each layer (so dim=1)
alphas = self.attention(lstm_out)
alphas = F.softmax(alphas, dim=dimension) # batch_size x num_layers x 1
weighted_lstm_out = torch.sum(torch.mul(alphas, lstm_out), dim=dimension) # batch_size x hidden_dim
'''
weighted_lstm_out = lstm_out[-1]
'''
# Get final results, passing in weighted lstm output:
tag_space = self.hidden2label(weighted_lstm_out) # batch_size x 1
log_probs = F.log_softmax(tag_space, dim=dimension) # batch_size x 1
return log_probs, alphas
# includes word and polarity ("feature") embeddings
def make_embeddings_vector(sentence, word_to_ix, word_to_polarity):
print(sentence)
word_vec = []
feature_vec = []
for word in sentence:
# domains of word_to_ix and word_to_polarity are equal,
# so just need to check word_to_ix
if word in word_to_ix:
word_vec.append(word_to_ix[word])
feature_vec.append(word_to_polarity[word])
# print(word + " " + str(word_to_polarity[word]))
print(word_vec)
return autograd.Variable(torch.LongTensor(word_vec)), autograd.Variable(
torch.LongTensor(feature_vec))
def train(Xtrain, Xdev, Xtest,
model, word_to_ix, ix_to_word, ix_to_docid,
using_GPU, lr_decay=1):
print("Evaluating before training...")
train_res = []
dev_res = []
dev_f1_aves = []
test_res = []
train_accs = []
dev_accs = []
test_accs = []
'''
# Just for 1 batch
for batch in Xtrain:
plotter.graph_attention(model, word_to_ix, ix_to_word, batch, using_GPU)
break
'''
weights = datasets[set_name]["weights"]
if using_GPU:
weights = weights.cuda()
loss_function = nn.NLLLoss(weight=weights)
train_losses_epoch = []
dev_losses_epoch = []
'''
num_grad_params = 0
all_params = 0
for name, param in model.named_parameters():
all_params += 1
if param.requires_grad:
num_grad_params += 1
print(name, type(param.data), param.size())
else:
print("this")
print(name, type(param.data), param.size())
print(num_grad_params)
print(all_params)
'''
print("evaluating training...")
train_score, train_acc, train_wrongs = evaluate(model, word_to_ix, ix_to_word, ix_to_docid, Xtrain, using_GPU)
print("train f1 scores = " + str(train_score))
dev_score, dev_acc, dev_wrongs = evaluate(model, word_to_ix, ix_to_word, ix_to_docid, Xdev, using_GPU)
print("dev f1 scores = " + str(dev_score))
train_res.append(train_score)
dev_res.append(dev_score)
dev_f1_aves.append(sum(dev_score) / len(dev_score))
best_epoch = 0
wrongs_to_ret = [train_wrongs, dev_wrongs]
train_accs.append(train_acc)
dev_accs.append(dev_acc)
test_score, test_acc, test_wrongs = evaluate(model, word_to_ix, ix_to_word, ix_to_docid, Xtest, using_GPU,
error_analysis=False)
test_res.append(test_score)
test_accs.append(test_acc)
# skip updating the non-requires-grad params (i.e. the embeddings)
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
for epoch in range(0, epochs):
losses = []
print("Epoch " + str(epoch))
i = 0
for batch in Xtrain:
(words, lengths), polarity, holder_target, label = batch.text, batch.polarity, batch.holder_target, batch.label
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad()
model.batch_size = len(label.data) # set batch size
# Step 3. Run our forward pass.
log_probs, alphas = model(words, polarity, holder_target, lengths)
# Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()
loss = loss_function(log_probs, label) # log_probs = actual distr, target = computed distr
losses.append(float(loss))
loss.backward()
optimizer.step()
# print("loss = " + str(loss))
if (i % 10 == 0):
print(" " + str(i))
i += 1
print("loss = " + str((sum(losses) / len(losses))))
# Apply decay
if (epoch % 10 == 0):
for param_group in optimizer.param_groups:
param_group['lr'] *= lr_decay
'''
# Just for 1 batch
for batch in Xtrain:
plotter_graph_attention(model, word_to_ix, ix_to_word, batch, using_GPU)
break
'''
print("Evaluating...")
print("evaluating training...")
train_score, train_acc, train_wrongs = evaluate(model, word_to_ix, ix_to_word, ix_to_docid, Xtrain, using_GPU)
print("train f1 scores = " + str(train_score))
print(train_wrongs)
print(Xdev)
dev_score, dev_acc, dev_wrongs = evaluate(model, word_to_ix, ix_to_word, ix_to_docid, Xdev, using_GPU,
losses=dev_losses_epoch, loss_fxn=loss_function)
train_losses_epoch.append(float(sum(losses)) / float(len(losses)))
print("dev loss = " + str(dev_losses_epoch[len(dev_losses_epoch) - 1]))
print("dev f1 scores = " + str(dev_score))
print(dev_wrongs)
train_res.append(train_score)
train_accs.append(train_acc)
dev_res.append(dev_score)
epoch_score = (dev_score[0] + dev_score[2]) / 2
dev_f1_aves.append(epoch_score)
if (epoch_score > dev_f1_aves[best_epoch]):
best_epoch = epoch
wrongs_to_ret = [train_wrongs, dev_wrongs]
print("Updated best epoch: " + str(dev_f1_aves[best_epoch]))
dev_accs.append(dev_acc)
test_score, test_acc, test_wrongs = evaluate(model, word_to_ix, ix_to_word, ix_to_docid, Xtest, using_GPU,
error_analysis=False)
test_res.append(test_score)
test_accs.append(test_acc)
print("saving model...")
torch.save(model.state_dict(), "./model_states/baseline_" + set_name + "_" + str(epoch) + ".pt")
print("dev losses:")
print(dev_losses_epoch)
return train_res, dev_res, test_res, train_accs, dev_accs, test_accs, train_losses_epoch, best_epoch, wrongs_to_ret
def decode(word_indices, ix_to_word):
words = [ix_to_word[index] for index in word_indices.data]
return words
def evaluate(model, word_to_ix, ix_to_word, ix_to_docid, Xs, using_GPU, error_analysis=ERROR_ANALYSIS,
losses=None, loss_fxn=None):
# Set model to eval mode to turn off dropout.
model.eval()
wrong_docs = [[], [], []]
total_true = [0, 0, 0]
total_pred = [0, 0, 0]
total_correct = [0, 0, 0]
num_examples = 0
num_correct = 0
print("Iterate across : " + str(len(Xs)) + " batch(es)")
counter = 0
loss_this_batch = []
# count positive classifications in pos
for batch in Xs:
counter += 1
# print(word_to_ix)
(words, lengths), polarity, holder_target, label = batch.text, batch.polarity, batch.holder_target, batch.label
docid = batch.docid
words.volatile=True
lengths.volatile=True
polarity.volatile=True
holder_target.volatile=True
label.volatile=True
model.batch_size = len(label.data) # set batch size
'''
if len(label.data) > BATCH_SIZE:
print(label.data)
'''
log_probs, attention = model(words, polarity, holder_target, lengths) # log probs: batch_size x 3
if losses is not None:
loss = loss_fxn(log_probs, label)
loss_this_batch.append(float(loss))
pred_label = log_probs.data.max(1)[1]
# Count the number of examples in this batch
for i in range(0, NUM_LABELS):
total_true[i] += torch.sum(label.data == i)
total_pred[i] += torch.sum(pred_label == i)
total_correct[i] += torch.sum((pred_label == i) * (label.data == i))
# Collect incorrect examples for error analysis
if error_analysis:
mask = (label.data != pred_label)
docs = docid[mask]
wrong_doc = list(map(lambda x: ix_to_docid[int(x)], docs))
wrong_label = list(log_probs[mask])
actual_label = list(label.data[mask])
wrong_docs[0].extend(wrong_doc)
wrong_docs[1].extend(wrong_label)
wrong_docs[2].extend(actual_label)
'''
for i in range(0, len(label.data)):
if label.data[i] != pred_label[i]:
wrong_doc = ix_to_docid[int(docid[i].data)]
# wrong_ht = holder_target[i, :]
if wrong_doc not in wrong_docs:
wrong_docs[wrong_doc] = [[pred_label[i], label.data.numpy()]]
else:
wrong_docs[wrong_doc].append([pred_label, label.data.numpy()])
'''
# Accuracy metrics
num_correct += float(torch.sum(pred_label == label.data))
num_examples += len(label.data)
assert sum(total_true) == num_examples
assert sum(total_pred) == num_examples
assert sum(total_correct) == num_correct
if counter % 50 == 0:
print(counter)
if losses is not None:
losses.append(sum(loss_this_batch) / len(loss_this_batch))
# Compute f1 scores (separate method?)
precision = [0, 0, 0]
recall = [0, 0, 0]
f1 = [0, 0, 0]
for i in range(0, NUM_LABELS):
if total_pred[i] == 0:
precision[i] = 0.0
else:
precision[i] = float(total_correct[i]) / float(total_pred[i])
recall[i] = float(total_correct[i]) / float(total_true[i])
if precision[i] + recall[i] == 0:
f1[i] = 0.0
else:
f1[i] = 2 * (precision[i] * recall[i]) / (precision[i] + recall[i])
# Compute accuracy
accuracy = num_correct / float(num_examples)
print(accuracy)
print("precision: " + str(precision))
print("recall: " + str(recall))
print(f1)
# score = f1_score(list(predictions), list(truths), labels=[0, 1, 2], average=None)
# print(score)
# Set the model back to train mode, to reactivate dropout.
model.train()
print(wrong_docs)
return f1, accuracy, wrong_docs
def main():
train_data, dev_data, test_data, TEXT, DOCID, _ = parser.parse_input_files(BATCH_SIZE, EMBEDDING_DIM, using_GPU,
filepath=datasets[set_name]["filepath"],
train_name=datasets[set_name]["filenames"][0],
dev_name=datasets[set_name]["filenames"][1],
test_name=datasets[set_name]["filenames"][2],
has_holdtarg=True)
word_to_ix = TEXT.vocab.stoi
ix_to_word = TEXT.vocab.itos
ix_to_docid = DOCID.vocab.itos
VOCAB_SIZE = len(word_to_ix)
word_embeds = TEXT.vocab.vectors
model = Model(NUM_LABELS, VOCAB_SIZE,
EMBEDDING_DIM, HIDDEN_DIM, word_embeds,
NUM_POLARITIES, BATCH_SIZE, DROPOUT_RATE)
# model.load_state_dict(torch.load("./model_states/baseline_F_10.pt"))
# Move the model to the GPU if available
if using_GPU:
model = model.cuda()
train_c, dev_c, test_c, train_a, dev_a, test_a, losses, best_epoch, wrongs = \
train(train_data, dev_data, test_data,
model,
word_to_ix, ix_to_word, ix_to_docid,
using_GPU)
print("Train results: ")
print(" " + str(train_c))
print(" " + str(train_a))
print("Dev results: ")
print(" " + str(dev_c))
print(" " + str(dev_a))
print("Test results: ")
print(" " + str(test_c))
print(" " + str(test_a))
print("Losses: ")
print(losses)
print("Best epoch = " + str(best_epoch))
print("Train results: ")
print(" " + str(train_c[best_epoch]) + " " + str(sum(train_c[best_epoch]) / len(train_c[best_epoch])))
print(" " + str(train_a[best_epoch]))
print("Dev results: ")
print(" " + str(dev_c[best_epoch]) + " " + str(sum(dev_c[best_epoch]) / len(dev_c[best_epoch])))
print(" " + str(dev_a[best_epoch]))
print("Test results: ")
print(" " + str(test_c[best_epoch]) + " " + str(sum(test_c[best_epoch]) / len(test_c[best_epoch])))
print(" " + str(test_a[best_epoch]))
print("Wrongs")
print(wrongs)
'''
print(str(dev_c))
best_epochs = np.argmax(np.array(dev_c))
dev_results = dev_c[best_epochs]
print("Test performance = " + str(test_c[best_epochs]))
'''
if __name__ == "__main__":
main()