-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsac.py
127 lines (118 loc) · 3.56 KB
/
sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
Use SAC on BAC tasks
"""
import hydra
import gym
import torch
import barl.envs
from barl.util.misc_util import Dumper
import numpy as np
import rlkit.torch.pytorch_util as ptu
from rlkit.data_management.env_replay_buffer import EnvReplayBuffer
from rlkit.envs.wrappers import NormalizedBoxEnv
from rlkit.launchers.launcher_util import setup_logger
from rlkit.core import logger
from rlkit.samplers.data_collector import MdpPathCollector
from rlkit.torch.sac.policies import TanhGaussianPolicy, MakeDeterministic
from rlkit.torch.sac.sac import SACTrainer
from rlkit.torch.networks import FlattenMlp
from rlkit.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
def experiment(env_name, variant):
eval_env = NormalizedBoxEnv(gym.make(env_name))
expl_env = NormalizedBoxEnv(gym.make(env_name))
obs_dim = expl_env.observation_space.low.size
action_dim = eval_env.action_space.low.size
M = variant['layer_size']
qf1 = FlattenMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
qf2 = FlattenMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
target_qf1 = FlattenMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
target_qf2 = FlattenMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
policy = TanhGaussianPolicy(
obs_dim=obs_dim,
action_dim=action_dim,
hidden_sizes=[M, M],
)
eval_policy = MakeDeterministic(policy)
eval_path_collector = MdpPathCollector(
eval_env,
eval_policy,
)
expl_path_collector = MdpPathCollector(
expl_env,
policy,
)
replay_buffer = EnvReplayBuffer(
variant['replay_buffer_size'],
expl_env,
)
trainer = SACTrainer(
env=eval_env,
policy=policy,
qf1=qf1,
qf2=qf2,
target_qf1=target_qf1,
target_qf2=target_qf2,
**variant['trainer_kwargs']
)
algorithm = TorchBatchRLAlgorithm(
trainer=trainer,
exploration_env=expl_env,
evaluation_env=eval_env,
exploration_data_collector=expl_path_collector,
evaluation_data_collector=eval_path_collector,
replay_buffer=replay_buffer,
**variant['algorithm_kwargs']
)
algorithm.to(ptu.device)
algorithm.train()
@hydra.main(config_path='cfg', config_name='rlkit')
def main(config):
torch.manual_seed(config.seed)
np.random.seed(config.seed)
variant = dict(
algorithm="SAC",
version="normal",
layer_size=config.alg.layer_size,
replay_buffer_size=int(1E6),
algorithm_kwargs=dict(
num_epochs=config.num_epochs,
num_eval_steps_per_epoch=1000,
num_trains_per_train_loop=1000,
num_expl_steps_per_train_loop=1000,
min_num_steps_before_training=0,
num_train_loops_per_epoch=1,
max_path_length=config.env.max_path_length,
batch_size=256,
),
trainer_kwargs=dict(
soft_target_tau=5e-3,
discount=config.discount,
target_update_period=1,
policy_lr=3E-4,
qf_lr=3E-4,
reward_scale=1,
use_automatic_entropy_tuning=True,
),
)
logger.reset()
setup_logger(config.name, variant=variant, log_dir='.')
ptu.set_gpu_mode(True) # optionally set the GPU (default=False)
experiment(config.env.name, variant)
if __name__ == "__main__":
main()