-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
104 lines (99 loc) · 4.27 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
import torchvision.datasets as dset
import torchvision.transforms as transforms
from PIL import Image
import os
import numpy
import random
class catadata(torch.utils.data.Dataset):
def __init__(self, filepath, train, transform=None, target_transform=None, download=False):
datalist = []
self.taglist = []
self.transform = transform
self.target_transform = target_transform
self.train = train
abnormal_path = filepath + '/abnormal/'
normal_path = filepath + '/normal/'
width, height = [], []
for filename in os.listdir(abnormal_path):
pic = Image.open(abnormal_path + filename)
pic = self.transform(pic)
datalist.append((pic, 1, filename))
# print('min width:{} min height:{}'.format(min(width), min(height)))
for filename in os.listdir(normal_path):
pic = Image.open(normal_path + filename)
pic = self.transform(pic)
datalist.append((pic, 0, filename))
datasize = len(datalist)
random.shuffle(datalist)
if self.train:
train_list = datalist[:int(datasize*0.8)]
imagelist = [item[0] for item in train_list]
taglist= [item[1] for item in train_list]
namelist = [item[2] for item in train_list]
self.train_data = imagelist
self.train_labels = taglist
self.namelist = namelist
print('train data size:{}'.format(len(self.train_data)))
else:
# resume
test_list = datalist[int(datasize*0.8):]
imagelist = [item[0] for item in test_list]
taglist= [item[1] for item in test_list]
namelist = [item[2] for item in test_list]
self.test_data = imagelist
self.test_labels = taglist
self.namelist = namelist
print('test data size:{}'.format(len(self.test_data)))
def __getitem__(self, index):
if self.train:
img, target, name = self.train_data[index], self.train_labels[index], self.namelist[index]
else:
img, target, name = self.test_data[index], self.test_labels[index], self.namelist[index]
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, name
def __len__(self):
if self.train:
return len(self.train_data)
else:
return len(self.test_data)
def getDataloaders(data, config_of_data, splits=['train', 'val', 'test'],
aug=True, use_validset=True, data_root='data/cata', batch_size=1, normalized=True,
num_workers=1, **kwargs):
train_loader, val_loader, test_loader = None, None, None
if data.find('cata')>=0 :
print('loading ' + data)
print(config_of_data)
d_func = catadata
#normalize = transforms.Normalize(mean=[0.5071, 0.4867, 0.4408], std=[0.2675, 0.2565, 0.2761])
if config_of_data['augmentation']:
print('with data augmentation')
aug_trans = [
transforms.RandomCrop(64, padding=4),
transforms.RandomHorizontalFlip(),
]
else:
aug_trans = []
common_trans = [
transforms.RandomCrop(64, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
]
if normalized:
print('dataset is normalized')
common_trans.append(normalize)
train_compose = transforms.Compose(aug_trans + common_trans)
test_compose = transforms.Compose(common_trans)
if True:
if 'train' in splits:
train_set = d_func(data_root, train=True, transform=train_compose, download=True)
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=batch_size, shuffle=True)
if 'val' in splits or 'test' in splits:
test_set = d_func(data_root, train=False, transform=test_compose)
test_loader = torch.utils.data.DataLoader(
test_set, batch_size=1, shuffle=True)
val_loader = test_loader
# print('train_set:{}'.format(train_set[0]))
return train_loader, val_loader, test_loader