-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_summarisation.py
268 lines (233 loc) · 8.14 KB
/
evaluate_summarisation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#
# SPDX-FileCopyrightText: Copyright © 2024 Idiap Research Institute <[email protected]>
#
# SPDX-FileContributor: Fabio Fehr <[email protected]>
#
# SPDX-License-Identifier: GPL-3.0-only
#
# Load any environment variables
from dotenv import load_dotenv
load_dotenv()
import argparse
import os
from datetime import datetime
import lightning.pytorch as pl
import torch
from pytorch_lightning.loggers import WandbLogger
from data_modules.SummarisationDataModule import SummarisationDataModule
from models_pl.bart_lightning import BartLightning
from models_pl.nvibart_lightning import NviBartLightning
from utils import create_or_load_model
def load_empirical_distribution(args):
"""Load empirical distribution for the NVIB summarisation model."""
if args.emp_data is None:
args.emp_data = "gaussian" # No empirical distribution
# Load empirical distribution
empirical_distribution_path = os.path.join(
args.output_dir,
args.project_name,
"empirical_priors",
args.emp_data
+ "_"
+ args.model.replace("NVIB", "")
+ "_train_perc"
+ str(args.emp_perc)
+ "_"
+ "embedding_stats.pt",
)
print(empirical_distribution_path)
if os.path.exists(empirical_distribution_path):
print("Loading empirical distribution from: ", empirical_distribution_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
empirical_distribution = torch.load(empirical_distribution_path, map_location=device)
# Encoder
args.prior_mus_encoder = empirical_distribution["encoder_means"]
args.prior_vars_encoder = empirical_distribution["encoder_var"]
args.prior_log_alphas_encoder = empirical_distribution["mean_of_encoder_scaled_l2norm2"]
args.prior_log_alpha_stdevs_encoder = empirical_distribution["log_alpha_encoder_std"]
# Decoder
args.prior_mus_decoder = empirical_distribution["decoder_means"]
args.prior_vars_decoder = empirical_distribution["decoder_var"]
args.prior_log_alphas_decoder = empirical_distribution["mean_of_decoder_scaled_l2norm2"]
args.prior_log_alpha_stdevs_decoder = empirical_distribution["log_alpha_decoder_std"]
# Cross
args.prior_mus_cross = empirical_distribution["cross_means"]
args.prior_vars_cross = empirical_distribution["cross_var"]
args.prior_log_alphas_cross = empirical_distribution["mean_of_cross_scaled_l2norm2"]
args.prior_log_alpha_stdevs_cross = empirical_distribution["log_alpha_cross_std"]
else:
print("No empirical distribution")
def main(args):
"""Main function to evaluate summarisation models."""
START_TIME = datetime.now().replace(microsecond=0)
dict_args = vars(args)
pl.seed_everything(args.seed)
OUTPUT_PATH = os.path.join(args.output_dir, args.project_name, args.experiment_name)
args.output_path = OUTPUT_PATH
# Explicit model path for evaluation - if None then use instantiated model
MODEL_PATH = args.model_path
# Select model
model = {
"BART-LARGE-CNN": BartLightning,
"BART-LARGE-XSUM": BartLightning,
"NVIBBART-LARGE-CNN": NviBartLightning,
"NVIBBART-LARGE-XSUM": NviBartLightning,
}[args.model]
# If NVIB model then load empirical distribution
if "NVIB" in args.model:
load_empirical_distribution(args)
# Load best model
model, wandb_id = create_or_load_model(OUTPUT_PATH, MODEL_PATH, model, args)
# Make data module
dm = SummarisationDataModule(
model, fp16=True if args.quantisation == "16bit" else False, **dict_args
)
# WandB logger
wandb_logger = WandbLogger(project=args.project_name, id=wandb_id, log_model="None")
wandb_logger.log_hyperparams(args)
# Trainer
trainer = pl.Trainer(
# limit_val_batches=1,
# limit_test_batches=1,
# deterministic=True,
accelerator="auto",
logger=wandb_logger,
precision=16 if args.quantisation == "16bit" else 32,
)
# Evaluate model
model.eval()
# validation
START_TIME = datetime.now().replace(microsecond=0)
if not args.test:
print("Start validation")
trainer.validate(model, datamodule=dm)
val_time = (datetime.now().replace(microsecond=0) - START_TIME).total_seconds()
print("Validation: ", datetime.now().replace(microsecond=0) - START_TIME)
wandb_logger.log_metrics({"validation_time": val_time})
# test
else:
trainer.test(model, datamodule=dm)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Paths + Naming
parser.add_argument(
"--experiment_name",
default="initial_experiment",
type=str,
help="Experiment name",
)
parser.add_argument(
"--project_name",
default="local_experiments",
type=str,
help="Project name for wandb",
)
parser.add_argument("--output_dir", default="outputs", type=str, help="Output directory")
parser.add_argument(
"--model_path", default=None, type=str, help="Path to specific model checkpoint"
)
# Data
parser.add_argument(
"--data",
type=str,
choices=["cnn_dailymail", "xsum", "wikihow", "curation", "samsum"],
help="Dataset options",
)
parser.add_argument(
"--emp_data",
type=str,
default="gaussian",
choices=[
"cnn_dailymail",
"xsum",
"gaussian",
"wikihow",
"curation",
"samsum",
],
help="Empirical dataset options",
)
parser.add_argument(
"--emp_perc",
type=float,
default=1.0,
help="Amount of empirical data to use",
)
parser.add_argument(
"--num_workers", type=int, default=4, help="Number of workers for processing"
)
parser.add_argument(
"--val_perc",
type=float,
default=1,
)
# Model
parser.add_argument(
"--model",
default="BART-LARGE-XSUM",
help="Model selection",
)
# Quantisation
parser.add_argument(
"--quantisation",
default=None,
help="quantisation selection, 4bit, 8bit, 16bit",
)
# NVIB
# Not used in this work
parser.add_argument("--kld_lambda", type=float, default=1, help="KL dirichlet lambda")
parser.add_argument("--klg_lambda", type=float, default=1, help="KL gaussian lambda")
parser.add_argument(
"--mu_tau",
type=float,
default=1,
help="1 is the posterior, 0 is the empirical prior.",
)
# Used in this work
parser.add_argument(
"--alpha_tau_e",
type=float,
default=10,
help="Alpha tau encoder controls the influence of the empirical prior on the posterior.",
)
parser.add_argument(
"--alpha_tau_c",
type=float,
default=10,
help="Alpha tau cross controls the influence of the empirical prior on the posterior.",
)
parser.add_argument(
"--alpha_tau_d",
type=float,
default=10,
help="Alpha tau decoder controls the influence of the empirical prior on the posterior.",
)
parser.add_argument(
"--stdev_tau_e",
type=float,
default=0,
help="Stdev tau encoder controls the influence of the interpolation between query and value.",
)
parser.add_argument(
"--stdev_tau_c",
type=float,
default=0,
help="Stdev tau cross controls the influence of the interpolation between query and value.",
)
parser.add_argument(
"--stdev_tau_d",
type=float,
default=0,
help="Stdev tau decoder controls the influence of the interpolation between query and value.",
)
# Evaluation
parser.add_argument("--seed", default=42, type=int)
parser.add_argument(
"--fast_dev_run",
action="store_true",
help="Touches all train, validation and test scripts for debugging",
)
parser.add_argument("--test", action="store_true", help="Flag for testing")
parser.add_argument("--batch_size", default=1, type=int)
args = parser.parse_args()
main(args)