-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdsr_attacks.py
195 lines (159 loc) · 7.97 KB
/
dsr_attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
from models import DSE, ColPali
from PIL import Image
import numpy as np
from transformers.image_utils import (
to_numpy_array,
infer_channel_dimension_format,
PILImageResampling,
)
from transformers.image_transforms import (
resize,
convert_to_rgb
)
from utils import add_margin
import json
import os
from argparse import ArgumentParser
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
return True
def main(args):
mask_ratio = args.mask_ratio
optimization_method = args.optimization_method
init_noise = args.init_noise
grad_ratio = args.grad_ratio
cache_dir = args.cache_dir
seed_image = args.seed_image
query_file = f'{args.target_query_file}'
optimize_steps = args.num_steps
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if args.model == 'dse':
model = DSE(cache_dir=cache_dir).to('cuda').eval()
elif args.model == 'colpali':
model = ColPali(cache_dir=cache_dir).to('cuda').eval()
else:
raise ValueError('Model not supported')
adv_image = Image.open(seed_image)
adv_image = convert_to_rgb(adv_image)
adv_image = adv_image.resize((512, 512))
# prepare doc inputs
doc_inputs, resized_height, resized_width = model.get_doc_inputs([adv_image])
# Scale to be between 0 and 1
adv_image_np = to_numpy_array(adv_image)
input_data_format = infer_channel_dimension_format(adv_image_np)
adv_image_np = resize(
adv_image_np, size=(resized_height, resized_width),
resample=PILImageResampling.BICUBIC,
input_data_format=input_data_format
)
original_image_pt = torch.clone(torch.tensor(adv_image_np, dtype=torch.float32))
original_image_pt = original_image_pt.to(model.model.device)
if mask_ratio > 0:
original_image_pt, grad_mask = add_margin(original_image_pt, mask_ratio, init_black=False)
else:
grad_mask = torch.ones_like(original_image_pt, dtype=torch.bool)
with open(query_file, 'r') as f:
query_clusters = json.load(f)
for k in query_clusters:
# get targe query embeddings
queries = query_clusters[k]
print("Num of queries", len(queries))
with torch.no_grad():
query_embeddings = model.get_query_embeddings(queries).detach()
query_embeddings = query_embeddings.to(model.model.device)
adv_image_pt = torch.tensor(adv_image_np, dtype=torch.float32)
if mask_ratio > 0:
adv_image_pt, grad_mask = add_margin(adv_image_pt, mask_ratio, init_black=False)
# initialize noise
if optimization_method == "noise":
if init_noise == "zeros":
noise = torch.zeros_like(original_image_pt, requires_grad=True)
elif init_noise == "uniform":
noise = torch.randn_like(original_image_pt, requires_grad=True) * 255
elif init_noise == "ones":
noise = torch.ones_like(original_image_pt, requires_grad=True) * 255
else:
raise ValueError("Noise initialization not supported")
noise = noise * grad_mask.to(noise.device)
noise = noise.to(model.model.device)
elif optimization_method == "direct":
adv_image_pt = torch.tensor(adv_image_pt, requires_grad=True, dtype=torch.float32)
adv_image_pt.data = adv_image_pt.data.to(model.model.device)
else:
raise ValueError("Optimization method not supported")
# adversarial attack
optimizer = torch.optim.Adam(model.model.parameters(), lr=1.0) # used just for the scheduler, we manually update the image
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=optimize_steps, eta_min=0.0)
grad_mask = grad_mask.to(model.model.device)
for step in range(optimize_steps): # num_steps is the number of optimization iterations
if optimization_method == "direct":
adv_image_pt = torch.tensor(adv_image_pt, requires_grad=True, dtype=torch.float32)
adv_image_pt = adv_image_pt.to(model.model.device)
adv_image_with_noise = adv_image_pt
elif optimization_method == "noise":
noise = torch.tensor(noise, requires_grad=True, dtype=torch.float32)
noise = noise.to(model.model.device)
adv_image_pt = adv_image_pt.to(model.model.device)
# Recompute pixel values tensor from images_to_update
adv_image_with_noise = adv_image_pt + noise
adv_image_with_noise = adv_image_with_noise.clamp(0, 255)
# # Get the doc embeddings
doc_embeddings = model.get_doc_embedding_by_tensor(adv_image_with_noise,
doc_inputs,
resized_height,
resized_width,
input_data_format=input_data_format)
# Compute the loss
loss = model.compute_similarity(query_embeddings, doc_embeddings)
loss = -loss.mean()
# Backpropagation
loss.backward()
if optimization_method == "direct":
# Get the gradient
data_grad = adv_image_pt.grad.data
elif optimization_method == "noise":
data_grad = noise.grad.data
# only update the gradient where the mask is true
data_grad = data_grad * grad_mask
if grad_ratio is not None:
data_grad = torch.where(torch.abs(data_grad) > torch.quantile(torch.abs(data_grad), 1 - grad_ratio),
data_grad, torch.zeros_like(data_grad))
data_grad = data_grad / torch.norm(data_grad, p=1)
lr = lr_scheduler.get_lr()[0]
lr_scheduler.step()
# Update the image
if optimization_method == "direct":
adv_image_pt = adv_image_pt - lr * torch.sign(data_grad)
adv_image_pt = torch.clamp(adv_image_pt, 0, 255)
elif optimization_method == "noise":
noise = noise - lr * torch.sign(data_grad)
noise = torch.clamp(noise, 0, 255)
if step % 10 == 0:
# # Print loss for debugging
print(f"Step {step}: {loss.item()}")
ndarr = adv_image_with_noise.to("cpu", torch.uint8).numpy()
im = Image.fromarray(ndarr)
im.save(f'{save_dir}/adv_img_{k}.png')
if __name__ == '__main__':
# read arguments
parser = ArgumentParser()
parser.add_argument('--seed_image', type=str, required=True, help='Path to seed document')
parser.add_argument('--target_query_file', type=str, required=True, help='Path to seed queries')
parser.add_argument('--save_dir', type=str, required=True, help='Path to dir for saving adversarial images.')
parser.add_argument('--model', type=str, required=True, help='model name. Either dse or colpali')
parser.add_argument('--cache_dir', type=str, default=None, help='Cache directory to store the model')
parser.add_argument('--num_steps', type=int, default=3000, help='number of optimization steps')
parser.add_argument('--mask_ratio', type=float, default=0.0, help='mask ratio')
parser.add_argument('--optimization_method', type=str, default="direct", help='Optimization method. Possible values: direct, noise')
parser.add_argument('--init_noise', type=str, default="zeros", help='Noise initialization. Possible values: zeros, uniform, ones')
parser.add_argument('--grad_ratio', type=float, default=None, help='percentage of gradient to keep, between 0 and 1')
parser.add_argument('--random_seed', type=int, default=42, help='Random seed')
args = parser.parse_args()
set_seed(args.random_seed)
main(args)