-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_nq_dse.py
131 lines (102 loc) · 4.58 KB
/
eval_nq_dse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import pickle
import torch
import numpy as np
import os
from PIL import Image
import glob
from tqdm import tqdm
from argparse import ArgumentParser
from utils import store_results
from models import DSE
import json
def pickle_load(path):
with open(path, 'rb') as f:
reps, lookup = pickle.load(f)
return np.array(reps), lookup
def get_all_query_embeddings(embedding_dir):
query_files = glob.glob(f'{embedding_dir}/query.*.pkl')
query_embeddings = []
for file in query_files:
query_embeddings.append(pickle_load(file)[0])
query_embeddings = np.concatenate(query_embeddings)
query_embeddings = torch.tensor(query_embeddings).to('cuda')
return query_embeddings
def get_target_query_embedding(seed_query_path, model):
with open(seed_query_path, 'r') as f:
print(f"Evaluating using the following seed queries: {seed_query_path}")
queries = json.load(f)
queries = queries['queries']
with torch.no_grad():
query_embeddings = model.get_query_embeddings(queries).detach()
query_embeddings = query_embeddings.to(model.model.device)
return query_embeddings
def eval_nq(args):
adv_image_dir = args.adv_image_dir
corpus_embeddings_dir = args.corpus_embeddings_dir
cache_dir = args.cache_dir
seed_query_path = args.seed_query_path
model = DSE(cache_dir=cache_dir).to('cuda').eval()
adv_images = []
for file in os.listdir(f'{adv_image_dir}'):
if file.endswith('.png') or file.endswith('.jpg'):
adv_images.append(Image.open(f'{adv_image_dir}/{file}'))
print(f'Number of adversarial images: {len(adv_images)}')
with torch.no_grad():
adv_img_embeddings = model.get_doc_embeddings(adv_images).float()
if seed_query_path is not None:
query_embeddings = get_target_query_embedding(seed_query_path, model)
else: # load tevatron query pickle file
print(f"Evaluating using all queries in {corpus_embeddings_dir}")
query_embeddings = get_all_query_embeddings(corpus_embeddings_dir)
corpus_files = glob.glob(f'{corpus_embeddings_dir}/corpus.*.pkl')
doc_embeddings = []
lookups = []
for file in corpus_files:
emb, lookup = pickle_load(file)
doc_embeddings.extend(emb)
lookups.extend(lookup)
size_of_corpus = len(doc_embeddings)
doc_embeddings = np.array(doc_embeddings)
doc_embeddings = torch.tensor(doc_embeddings).to('cuda')
doc_embeddings = torch.cat([doc_embeddings, adv_img_embeddings])
lookups.extend([f'adv_{i}' for i in range(len(adv_img_embeddings))])
lookup_adv_indices = torch.tensor([i for i in range(size_of_corpus, size_of_corpus + len(adv_img_embeddings))])
lookup_adv_indices = lookup_adv_indices.to('cuda')
k_range = [1, 5, 10, 100]
metrics = {f'success_{k}': 0 for k in k_range}
first_positions = []
rr_adversarial = []
for query_embed in tqdm(query_embeddings):
similarities = model.compute_similarity(query_embed.unsqueeze(0), doc_embeddings)
sorted_similarities, sorted_doc_ids = torch.sort(similarities, descending=True)
adv_positions = torch.nonzero(torch.isin(sorted_doc_ids[0], lookup_adv_indices)).squeeze()
# If there is only one adversarial image =>return its position
# Otherwise, return the position of the highest adversarial image in the ranking
if len(lookup_adv_indices) == 1:
first_position = adv_positions.item()
else:
first_position = adv_positions[0].item()
for k in k_range:
if first_position < k:
metrics[f'success_{k}'] += 1
if first_position > 100:
rr_adversarial.append(0)
else:
rr_adversarial.append(1 / (first_position + 1))
first_positions.append(first_position)
for k in k_range:
metrics[f'success_{k}'] /= len(query_embeddings)
metrics["mrr_100"] = float(np.mean(rr_adversarial))
# metrics['mean_first_position'] = float(np.mean(first_positions))
# metrics["first_positions"] = first_positions
print(metrics)
store_results(metrics, adv_image_dir, dset_name="dse_nq")
return metrics
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--adv_image_dir', type=str, required=True, help='Path to adversarial images')
parser.add_argument('--seed_query_path', type=str, default=None, help='Path to seed queries')
parser.add_argument('--corpus_embeddings_dir', type=str, required=True, help='Path to corpus embeddings')
parser.add_argument('--cache_dir', type=str, default=None)
args = parser.parse_args()
eval_nq(args)