-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_vidore.py
196 lines (162 loc) · 7.3 KB
/
eval_vidore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import copy
from datasets import load_dataset
# from dotenv import load_dotenv
import math
from typing import Any, Dict, List, Optional
from PIL import Image
import os
import torch
from datasets import Dataset
from tqdm import tqdm
from vidore_benchmark.utils.iter_utils import batched
from models import Model, ColPali, DSE
from argparse import ArgumentParser
from utils import store_results
def embed_queries_passages(
vision_retriever: Model,
ds: Dataset,
batch_query: int,
batch_passage: int,
img_resize: bool = False
):
seen_queries = set()
queries = []
for query in ds["query"]:
if query is not None and query not in seen_queries:
queries.append(query)
seen_queries.add(query)
if len(queries) == 0:
raise ValueError("All queries are None")
# Get the embeddings for the queries and passages
emb_queries = vision_retriever.get_query_embeddings(queries, batch_size=batch_query)
# NOTE: To prevent overloading the RAM for large datasets, we will load the passages (images)
# that will be fed to the model in batches (this should be fine for queries as their memory footprint
# is negligible. This optimization is about efficient data loading, and is not related to the model's
# forward pass which is also batched.
emb_passages: List[torch.Tensor] = []
for passage_batch in tqdm(
batched(ds, n=batch_passage),
desc="Dataloader pre-batching",
total=math.ceil(len(ds) / (batch_passage)),
):
passages: List[Any] = [db['image'] for db in passage_batch]
if img_resize:
resized_passages = [passage.resize((680, 680)) for passage in passages]
passages = resized_passages
batch_emb_passages = vision_retriever.get_doc_embeddings(passages)
emb_passages.extend(batch_emb_passages)
query_number = len(queries)
assert len(emb_queries) == query_number
return emb_queries, emb_passages
def evaluate_dataset_adv(
emb_queries: torch.Tensor,
emb_passages: List[torch.Tensor],
vision_retriever: Model,
adv_images: Optional[List[Image.Image]] = None,
) -> Dict[str, Optional[float]]:
"""
Evaluate the model on a given dataset using the MTEB metrics.
NOTE: The dataset should contain the following columns:
- query: the query text
- image_filename: the filename of the image
- image: the image (PIL.Image) if `use_visual_embedding` is True
- text_description: the text description (i.e. the page caption or the text chunks) if
`use_visual_embedding` is False
"""
# Dataset: sanity check
# passage_column_name = "image" if vision_retriever.use_visual_embedding else "text_description"
# required_columns = ["query", passage_column_name, "image_filename"]
#
# if not all(col in ds.column_names for col in required_columns):
# raise ValueError(f"Dataset should contain the following columns: {required_columns}")
# Remove `None` queries (i.e. pages for which no question was generated) and duplicates
# queries = list(set(ds["query"]))
# --> old buggy behavior - this differs from colpali-engine implementation where duplicates are NOT removed
# for fairness with externally evaluated retrievers since bug, we maintain this behavior and remove duplicates
# This slightly boosts scores on docvqa typically
# print("These values should be the same")
# print(f'len(emb_queries): {len(emb_queries)}')
# print(f'len(emb_passages): {len(emb_passages)}')
# emb_adv_passages = vision_retriever.get_doc_embeddings(adv_images)
# This gives OOM; instead, generate the embeddings in batches
emb_adv_passages = []
step_size = 8
for i in range(0, len(adv_images), step_size):
batch_images = adv_images[i:i+step_size]
emb_adv_passages.extend(vision_retriever.get_doc_embeddings(batch_images))
emb_adv_passages = torch.stack(emb_adv_passages)
extended_emb_passages = copy.copy(emb_passages)
extended_emb_passages.extend(emb_adv_passages)
# Get the similarity scores
scores = vision_retriever.compute_similarity(emb_queries, extended_emb_passages)
total_num_docs = len(extended_emb_passages)
num_adv_docs = len(emb_adv_passages)
doc_ids = [str(i) for i in range(total_num_docs - num_adv_docs)]
adv_doc_ids = [f'adv_{i}' for i in range(num_adv_docs)]
doc_ids.extend(adv_doc_ids)
metrics = {'success_5': 0,
'success_10': 0,
'success_20': 0,
'success_100': 0}
for i in range(len(emb_queries)):
similarities = scores[i]
# sort docs
sorted_similarities, sorted_doc_ids = torch.sort(similarities, descending=True)
sorted_doc_ids = [doc_ids[idx] for idx in sorted_doc_ids]
for k in [5, 10, 20, 100]:
if 'adv' in ''.join(sorted_doc_ids[:k]):
metrics[f'success_{k}'] += 1
for k in [5, 10, 20, 100]:
metrics[f'success_{k}'] /= len(emb_queries)
return metrics
# load_dotenv(override=True)
dataset_names = [
'vidore/arxivqa_test_subsampled',
'vidore/docvqa_test_subsampled',
'vidore/infovqa_test_subsampled',
'vidore/tabfquad_test_subsampled',
'vidore/tatdqa_test',
'vidore/shiftproject_test',
'vidore/syntheticDocQA_artificial_intelligence_test',
'vidore/syntheticDocQA_energy_test',
'vidore/syntheticDocQA_government_reports_test',
'vidore/syntheticDocQA_healthcare_industry_test'
]
def main(args):
"""
Example script for a Python usage of the Vidore Benchmark.
"""
adv_image_dir = args.adv_image_dir
model_name = args.model
cache_dir = args.cache_dir
if model_name == 'dse':
retriever = DSE(cache_dir=cache_dir).to('cuda')
batch_passage= 1
elif model_name == 'colpali':
retriever = ColPali(cache_dir=cache_dir).to('cuda')
batch_passage = 8
else:
raise ValueError('Invalid model name')
for dataset_name in dataset_names:
dataset = load_dataset(dataset_name, split="test", cache_dir=cache_dir)
with torch.no_grad():
query_emb, passage_emb = embed_queries_passages(retriever, dataset, batch_query=8,
batch_passage=batch_passage)
# iterate through the experiment_ids in the adv_image_dir
adv_images = []
for file in os.listdir(adv_image_dir):
if file.endswith('.jpg') or file.endswith('.png'):
adv_images.append(Image.open(f'{adv_image_dir}/{file}'))
print("Number of adv images: ", len(adv_images))
metrics = evaluate_dataset_adv(query_emb, passage_emb, retriever, adv_images)
res = {dataset_name: metrics}
store_results(res, adv_image_dir, dset_name=f"{model_name}_vidore")
print(dataset_name, metrics)
print(f"Finished {dataset_name}")
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--model', type=str, default='dse', help='model name. Either dse or colpali')
parser.add_argument('--cache_dir', type=str, default=None, help='Cache directory to store the model')
parser.add_argument('--adv_image_dir', type=str, required=True, help='Path to dir containing adversarial images')
args = parser.parse_args()
main(args)