-
Notifications
You must be signed in to change notification settings - Fork 468
/
Copy pathindustreal_task_pegs_insert.py
791 lines (677 loc) · 28.8 KB
/
industreal_task_pegs_insert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
# Copyright (c) 2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""IndustReal: class for peg insertion task.
Inherits IndustReal pegs environment class and Factory abstract task class (not enforced).
Trains a peg insertion policy with Simulation-Aware Policy Update (SAPU), SDF-Based Reward, and Sampling-Based Curriculum (SBC).
Can be executed with python train.py task=IndustRealTaskPegsInsert.
"""
import hydra
import numpy as np
import omegaconf
import os
import torch
import warp as wp
from isaacgym import gymapi, gymtorch, torch_utils
from isaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask
from isaacgymenvs.tasks.factory.factory_schema_config_task import (
FactorySchemaConfigTask,
)
import isaacgymenvs.tasks.industreal.industreal_algo_utils as algo_utils
from isaacgymenvs.tasks.industreal.industreal_env_pegs import IndustRealEnvPegs
from isaacgymenvs.utils import torch_jit_utils
class IndustRealTaskPegsInsert(IndustRealEnvPegs, FactoryABCTask):
def __init__(
self,
cfg,
rl_device,
sim_device,
graphics_device_id,
headless,
virtual_screen_capture,
force_render,
):
"""Initialize instance variables. Initialize task superclass."""
self.cfg = cfg
self._get_task_yaml_params()
super().__init__(
cfg,
rl_device,
sim_device,
graphics_device_id,
headless,
virtual_screen_capture,
force_render,
)
self._acquire_task_tensors()
self.parse_controller_spec()
# Get Warp mesh objects for SAPU and SDF-based reward
wp.init()
self.wp_device = wp.get_preferred_device()
(
self.wp_plug_meshes,
self.wp_plug_meshes_sampled_points,
self.wp_socket_meshes,
) = algo_utils.load_asset_meshes_in_warp(
plug_files=self.plug_files,
socket_files=self.socket_files,
num_samples=self.cfg_task.rl.sdf_reward_num_samples,
device=self.wp_device,
)
if self.viewer != None:
self._set_viewer_params()
def _get_task_yaml_params(self):
"""Initialize instance variables from YAML files."""
cs = hydra.core.config_store.ConfigStore.instance()
cs.store(name="factory_schema_config_task", node=FactorySchemaConfigTask)
self.cfg_task = omegaconf.OmegaConf.create(self.cfg)
self.max_episode_length = (
self.cfg_task.rl.max_episode_length
) # required instance var for VecTask
ppo_path = os.path.join(
"train/IndustRealTaskPegsInsertPPO.yaml"
) # relative to Gym's Hydra search path (cfg dir)
self.cfg_ppo = hydra.compose(config_name=ppo_path)
self.cfg_ppo = self.cfg_ppo["train"] # strip superfluous nesting
def _acquire_task_tensors(self):
"""Acquire tensors."""
self.identity_quat = (
torch.tensor([0.0, 0.0, 0.0, 1.0], device=self.device)
.unsqueeze(0)
.repeat(self.num_envs, 1)
)
# Compute pose of gripper goal and top of socket in socket frame
self.gripper_goal_pos_local = torch.tensor(
[
[
0.0,
0.0,
(self.cfg_task.env.socket_base_height + self.plug_grasp_offsets[i]),
]
for i in range(self.num_envs)
],
device=self.device,
)
self.gripper_goal_quat_local = self.identity_quat.clone()
self.socket_top_pos_local = torch.tensor(
[[0.0, 0.0, self.socket_heights[i]] for i in range(self.num_envs)],
device=self.device,
)
self.socket_quat_local = self.identity_quat.clone()
# Define keypoint tensors
self.keypoint_offsets = (
algo_utils.get_keypoint_offsets(self.cfg_task.rl.num_keypoints, self.device)
* self.cfg_task.rl.keypoint_scale
)
self.keypoints_plug = torch.zeros(
(self.num_envs, self.cfg_task.rl.num_keypoints, 3),
dtype=torch.float32,
device=self.device,
)
self.keypoints_socket = torch.zeros_like(
self.keypoints_plug, device=self.device
)
self.actions = torch.zeros(
(self.num_envs, self.cfg_task.env.numActions), device=self.device
)
self.curr_max_disp = self.cfg_task.rl.initial_max_disp
def _refresh_task_tensors(self):
"""Refresh tensors."""
# Compute pose of gripper goal and top of socket in global frame
self.gripper_goal_quat, self.gripper_goal_pos = torch_jit_utils.tf_combine(
self.socket_quat,
self.socket_pos,
self.gripper_goal_quat_local,
self.gripper_goal_pos_local,
)
self.socket_top_quat, self.socket_top_pos = torch_jit_utils.tf_combine(
self.socket_quat,
self.socket_pos,
self.socket_quat_local,
self.socket_top_pos_local,
)
# Add observation noise to socket pos
self.noisy_socket_pos = torch.zeros_like(
self.socket_pos, dtype=torch.float32, device=self.device
)
socket_obs_pos_noise = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
)
socket_obs_pos_noise = socket_obs_pos_noise @ torch.diag(
torch.tensor(
self.cfg_task.env.socket_pos_obs_noise,
dtype=torch.float32,
device=self.device,
)
)
self.noisy_socket_pos[:, 0] = self.socket_pos[:, 0] + socket_obs_pos_noise[:, 0]
self.noisy_socket_pos[:, 1] = self.socket_pos[:, 1] + socket_obs_pos_noise[:, 1]
self.noisy_socket_pos[:, 2] = self.socket_pos[:, 2] + socket_obs_pos_noise[:, 2]
# Add observation noise to socket rot
socket_rot_euler = torch.zeros(
(self.num_envs, 3), dtype=torch.float32, device=self.device
)
socket_obs_rot_noise = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
)
socket_obs_rot_noise = socket_obs_rot_noise @ torch.diag(
torch.tensor(
self.cfg_task.env.socket_rot_obs_noise,
dtype=torch.float32,
device=self.device,
)
)
socket_obs_rot_euler = socket_rot_euler + socket_obs_rot_noise
self.noisy_socket_quat = torch_utils.quat_from_euler_xyz(
socket_obs_rot_euler[:, 0],
socket_obs_rot_euler[:, 1],
socket_obs_rot_euler[:, 2],
)
# Compute observation noise on socket
(
self.noisy_gripper_goal_quat,
self.noisy_gripper_goal_pos,
) = torch_jit_utils.tf_combine(
self.noisy_socket_quat,
self.noisy_socket_pos,
self.gripper_goal_quat_local,
self.gripper_goal_pos_local,
)
# Compute pos of keypoints on plug and socket in world frame
for idx, keypoint_offset in enumerate(self.keypoint_offsets):
self.keypoints_plug[:, idx] = torch_jit_utils.tf_combine(
self.plug_quat,
self.plug_pos,
self.identity_quat,
keypoint_offset.repeat(self.num_envs, 1),
)[1]
self.keypoints_socket[:, idx] = torch_jit_utils.tf_combine(
self.socket_quat,
self.socket_pos,
self.identity_quat,
keypoint_offset.repeat(self.num_envs, 1),
)[1]
def pre_physics_step(self, actions):
"""Reset environments. Apply actions from policy as position/rotation targets, force/torque targets, and/or PD gains."""
env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.actions = actions.clone().to(
self.device
) # shape = (num_envs, num_actions); values = [-1, 1]
self._apply_actions_as_ctrl_targets(
actions=self.actions, ctrl_target_gripper_dof_pos=0.0, do_scale=True
)
def post_physics_step(self):
"""Step buffers. Refresh tensors. Compute observations and reward."""
self.progress_buf[:] += 1
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
self.compute_observations()
self.compute_reward()
def compute_observations(self):
"""Compute observations."""
delta_pos = self.gripper_goal_pos - self.fingertip_centered_pos
noisy_delta_pos = self.noisy_gripper_goal_pos - self.fingertip_centered_pos
# Define observations (for actor)
obs_tensors = [
self.arm_dof_pos, # 7
self.pose_world_to_robot_base(
self.fingertip_centered_pos, self.fingertip_centered_quat
)[
0
], # 3
self.pose_world_to_robot_base(
self.fingertip_centered_pos, self.fingertip_centered_quat
)[
1
], # 4
self.pose_world_to_robot_base(
self.noisy_gripper_goal_pos, self.noisy_gripper_goal_quat
)[
0
], # 3
self.pose_world_to_robot_base(
self.noisy_gripper_goal_pos, self.noisy_gripper_goal_quat
)[
1
], # 4
noisy_delta_pos,
] # 3
# Define state (for critic)
state_tensors = [
self.arm_dof_pos, # 7
self.arm_dof_vel, # 7
self.pose_world_to_robot_base(
self.fingertip_centered_pos, self.fingertip_centered_quat
)[
0
], # 3
self.pose_world_to_robot_base(
self.fingertip_centered_pos, self.fingertip_centered_quat
)[
1
], # 4
self.fingertip_centered_linvel, # 3
self.fingertip_centered_angvel, # 3
self.pose_world_to_robot_base(
self.gripper_goal_pos, self.gripper_goal_quat
)[
0
], # 3
self.pose_world_to_robot_base(
self.gripper_goal_pos, self.gripper_goal_quat
)[
1
], # 4
delta_pos, # 3
self.pose_world_to_robot_base(self.plug_pos, self.plug_quat)[0], # 3
self.pose_world_to_robot_base(self.plug_pos, self.plug_quat)[1], # 4
noisy_delta_pos - delta_pos,
] # 3
self.obs_buf = torch.cat(
obs_tensors, dim=-1
) # shape = (num_envs, num_observations)
self.states_buf = torch.cat(state_tensors, dim=-1)
return self.obs_buf
def compute_reward(self):
"""Detect successes and failures. Update reward and reset buffers."""
self._update_rew_buf()
self._update_reset_buf()
def _update_rew_buf(self):
"""Compute reward at current timestep."""
self.prev_rew_buf = self.rew_buf.clone()
# SDF-Based Reward: Compute reward based on SDF distance
sdf_reward = algo_utils.get_sdf_reward(
wp_plug_meshes_sampled_points=self.wp_plug_meshes_sampled_points,
asset_indices=self.asset_indices,
plug_pos=self.plug_pos,
plug_quat=self.plug_quat,
plug_goal_sdfs=self.plug_goal_sdfs,
wp_device=self.wp_device,
device=self.device,
)
# SDF-Based Reward: Apply reward
self.rew_buf[:] = self.cfg_task.rl.sdf_reward_scale * sdf_reward
# SDF-Based Reward: Log reward
self.extras["sdf_reward"] = torch.mean(self.rew_buf)
# SAPU: Compute reward scale based on interpenetration distance
low_interpen_envs, high_interpen_envs = [], []
(
low_interpen_envs,
high_interpen_envs,
sapu_reward_scale,
) = algo_utils.get_sapu_reward_scale(
asset_indices=self.asset_indices,
plug_pos=self.plug_pos,
plug_quat=self.plug_quat,
socket_pos=self.socket_pos,
socket_quat=self.socket_quat,
wp_plug_meshes_sampled_points=self.wp_plug_meshes_sampled_points,
wp_socket_meshes=self.wp_socket_meshes,
interpen_thresh=self.cfg_task.rl.interpen_thresh,
wp_device=self.wp_device,
device=self.device,
)
# SAPU: For envs with low interpenetration, apply reward scale ("weight" step)
self.rew_buf[low_interpen_envs] *= sapu_reward_scale
# SAPU: For envs with high interpenetration, do not update reward ("filter" step)
if len(high_interpen_envs) > 0:
self.rew_buf[high_interpen_envs] = self.prev_rew_buf[high_interpen_envs]
# SAPU: Log reward after scaling and adjustment from SAPU
self.extras["sapu_adjusted_reward"] = torch.mean(self.rew_buf)
is_last_step = self.progress_buf[0] == self.max_episode_length - 1
if is_last_step:
# Success bonus: Check which envs have plug engaged (partially inserted) or fully inserted
is_plug_engaged_w_socket = algo_utils.check_plug_engaged_w_socket(
plug_pos=self.plug_pos,
socket_top_pos=self.socket_top_pos,
keypoints_plug=self.keypoints_plug,
keypoints_socket=self.keypoints_socket,
cfg_task=self.cfg_task,
progress_buf=self.progress_buf,
)
is_plug_inserted_in_socket = algo_utils.check_plug_inserted_in_socket(
plug_pos=self.plug_pos,
socket_pos=self.socket_pos,
keypoints_plug=self.keypoints_plug,
keypoints_socket=self.keypoints_socket,
cfg_task=self.cfg_task,
progress_buf=self.progress_buf,
)
# Success bonus: Compute reward scale based on whether plug is engaged with socket, as well as closeness to full insertion
engagement_reward_scale = algo_utils.get_engagement_reward_scale(
plug_pos=self.plug_pos,
socket_pos=self.socket_pos,
is_plug_engaged_w_socket=is_plug_engaged_w_socket,
success_height_thresh=self.cfg_task.rl.success_height_thresh,
device=self.device,
)
# Success bonus: Apply reward with reward scale
self.rew_buf[:] += (
engagement_reward_scale * self.cfg_task.rl.engagement_bonus
)
# Success bonus: Log success rate, ignoring environments with large interpenetration
if len(high_interpen_envs) > 0:
is_plug_inserted_in_socket_low_interpen = is_plug_inserted_in_socket[
low_interpen_envs
]
self.extras["insertion_successes"] = torch.mean(
is_plug_inserted_in_socket_low_interpen.float()
)
else:
self.extras["insertion_successes"] = torch.mean(
is_plug_inserted_in_socket.float()
)
# SBC: Compute reward scale based on curriculum difficulty
sbc_rew_scale = algo_utils.get_curriculum_reward_scale(
cfg_task=self.cfg_task, curr_max_disp=self.curr_max_disp
)
# SBC: Apply reward scale (shrink negative rewards, grow positive rewards)
self.rew_buf[:] = torch.where(
self.rew_buf[:] < 0.0,
self.rew_buf[:] / sbc_rew_scale,
self.rew_buf[:] * sbc_rew_scale,
)
# SBC: Log current max downward displacement of plug at beginning of episode
self.extras["curr_max_disp"] = self.curr_max_disp
# SBC: Update curriculum difficulty based on success rate
self.curr_max_disp = algo_utils.get_new_max_disp(
curr_success=self.extras["insertion_successes"],
cfg_task=self.cfg_task,
curr_max_disp=self.curr_max_disp,
)
def _update_reset_buf(self):
"""Assign environments for reset if maximum episode length has been reached."""
self.reset_buf[:] = torch.where(
self.progress_buf[:] >= self.cfg_task.rl.max_episode_length - 1,
torch.ones_like(self.reset_buf),
self.reset_buf,
)
def reset_idx(self, env_ids):
"""Reset specified environments."""
self._reset_franka()
# Close gripper onto plug
self.disable_gravity() # to prevent plug from falling
self._reset_object()
self._move_gripper_to_grasp_pose(
sim_steps=self.cfg_task.env.num_gripper_move_sim_steps
)
self.close_gripper(sim_steps=self.cfg_task.env.num_gripper_close_sim_steps)
self.enable_gravity()
# Get plug SDF in goal pose for SDF-based reward
self.plug_goal_sdfs = algo_utils.get_plug_goal_sdfs(
wp_plug_meshes=self.wp_plug_meshes,
asset_indices=self.asset_indices,
socket_pos=self.socket_pos,
socket_quat=self.socket_quat,
wp_device=self.wp_device,
)
self._reset_buffers()
def _reset_franka(self):
"""Reset DOF states, DOF torques, and DOF targets of Franka."""
# Randomize DOF pos
self.dof_pos[:] = torch.cat(
(
torch.tensor(
self.cfg_task.randomize.franka_arm_initial_dof_pos,
device=self.device,
),
torch.tensor(
[self.asset_info_franka_table.franka_gripper_width_max],
device=self.device,
),
torch.tensor(
[self.asset_info_franka_table.franka_gripper_width_max],
device=self.device,
),
),
dim=-1,
).unsqueeze(
0
) # shape = (num_envs, num_dofs)
# Stabilize Franka
self.dof_vel[:, :] = 0.0 # shape = (num_envs, num_dofs)
self.dof_torque[:, :] = 0.0
self.ctrl_target_dof_pos = self.dof_pos.clone()
self.ctrl_target_fingertip_centered_pos = self.fingertip_centered_pos.clone()
self.ctrl_target_fingertip_centered_quat = self.fingertip_centered_quat.clone()
# Set DOF state
franka_actor_ids_sim = self.franka_actor_ids_sim.clone().to(dtype=torch.int32)
self.gym.set_dof_state_tensor_indexed(
self.sim,
gymtorch.unwrap_tensor(self.dof_state),
gymtorch.unwrap_tensor(franka_actor_ids_sim),
len(franka_actor_ids_sim),
)
# Set DOF torque
self.gym.set_dof_actuation_force_tensor_indexed(
self.sim,
gymtorch.unwrap_tensor(self.dof_torque),
gymtorch.unwrap_tensor(franka_actor_ids_sim),
len(franka_actor_ids_sim),
)
# Simulate one step to apply changes
self.simulate_and_refresh()
def _reset_object(self):
"""Reset root state of plug and socket."""
self._reset_socket()
self._reset_plug(before_move_to_grasp=True)
def _reset_socket(self):
"""Reset root state of socket."""
# Randomize socket pos
socket_noise_xy = 2 * (
torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device)
- 0.5
)
socket_noise_xy = socket_noise_xy @ torch.diag(
torch.tensor(
self.cfg_task.randomize.socket_pos_xy_noise,
dtype=torch.float32,
device=self.device,
)
)
socket_noise_z = torch.zeros(
(self.num_envs), dtype=torch.float32, device=self.device
)
socket_noise_z_mag = (
self.cfg_task.randomize.socket_pos_z_noise_bounds[1]
- self.cfg_task.randomize.socket_pos_z_noise_bounds[0]
)
socket_noise_z = (
socket_noise_z_mag
* torch.rand((self.num_envs), dtype=torch.float32, device=self.device)
+ self.cfg_task.randomize.socket_pos_z_noise_bounds[0]
)
self.socket_pos[:, 0] = (
self.robot_base_pos[:, 0]
+ self.cfg_task.randomize.socket_pos_xy_initial[0]
+ socket_noise_xy[:, 0]
)
self.socket_pos[:, 1] = (
self.robot_base_pos[:, 1]
+ self.cfg_task.randomize.socket_pos_xy_initial[1]
+ socket_noise_xy[:, 1]
)
self.socket_pos[:, 2] = self.cfg_base.env.table_height + socket_noise_z
# Randomize socket rot
socket_rot_noise = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
)
socket_rot_noise = socket_rot_noise @ torch.diag(
torch.tensor(
self.cfg_task.randomize.socket_rot_noise,
dtype=torch.float32,
device=self.device,
)
)
socket_rot_euler = (
torch.zeros((self.num_envs, 3), dtype=torch.float32, device=self.device)
+ socket_rot_noise
)
socket_rot_quat = torch_utils.quat_from_euler_xyz(
socket_rot_euler[:, 0], socket_rot_euler[:, 1], socket_rot_euler[:, 2]
)
self.socket_quat[:, :] = socket_rot_quat.clone()
# Stabilize socket
self.socket_linvel[:, :] = 0.0
self.socket_angvel[:, :] = 0.0
# Set socket root state
socket_actor_ids_sim = self.socket_actor_ids_sim.clone().to(dtype=torch.int32)
self.gym.set_actor_root_state_tensor_indexed(
self.sim,
gymtorch.unwrap_tensor(self.root_state),
gymtorch.unwrap_tensor(socket_actor_ids_sim),
len(socket_actor_ids_sim),
)
# Simulate one step to apply changes
self.simulate_and_refresh()
def _reset_plug(self, before_move_to_grasp):
"""Reset root state of plug."""
if before_move_to_grasp:
# Generate randomized downward displacement based on curriculum
curr_curriculum_disp_range = (
self.curr_max_disp - self.cfg_task.rl.curriculum_height_bound[0]
)
self.curriculum_disp = self.cfg_task.rl.curriculum_height_bound[
0
] + curr_curriculum_disp_range * (
torch.rand((self.num_envs,), dtype=torch.float32, device=self.device)
)
# Generate plug pos noise
self.plug_pos_xy_noise = 2 * (
torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device)
- 0.5
)
self.plug_pos_xy_noise = self.plug_pos_xy_noise @ torch.diag(
torch.tensor(
self.cfg_task.randomize.plug_pos_xy_noise,
dtype=torch.float32,
device=self.device,
)
)
# Set plug pos to assembled state, but offset plug Z-coordinate by height of socket,
# minus curriculum displacement
self.plug_pos[:, :] = self.socket_pos.clone()
self.plug_pos[:, 2] += self.socket_heights
self.plug_pos[:, 2] -= self.curriculum_disp
# Apply XY noise to plugs not partially inserted into sockets
socket_top_height = self.socket_pos[:, 2] + self.socket_heights
plug_partial_insert_idx = np.argwhere(
self.plug_pos[:, 2].cpu().numpy() > socket_top_height.cpu().numpy()
).squeeze()
self.plug_pos[plug_partial_insert_idx, :2] += self.plug_pos_xy_noise[
plug_partial_insert_idx
]
self.plug_quat[:, :] = self.identity_quat.clone()
# Stabilize plug
self.plug_linvel[:, :] = 0.0
self.plug_angvel[:, :] = 0.0
# Set plug root state
plug_actor_ids_sim = self.plug_actor_ids_sim.clone().to(dtype=torch.int32)
self.gym.set_actor_root_state_tensor_indexed(
self.sim,
gymtorch.unwrap_tensor(self.root_state),
gymtorch.unwrap_tensor(plug_actor_ids_sim),
len(plug_actor_ids_sim),
)
# Simulate one step to apply changes
self.simulate_and_refresh()
def _reset_buffers(self):
"""Reset buffers."""
self.reset_buf[:] = 0
self.progress_buf[:] = 0
def _set_viewer_params(self):
"""Set viewer parameters."""
cam_pos = gymapi.Vec3(-1.0, -1.0, 2.0)
cam_target = gymapi.Vec3(0.0, 0.0, 1.5)
self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target)
def _apply_actions_as_ctrl_targets(
self, actions, ctrl_target_gripper_dof_pos, do_scale
):
"""Apply actions from policy as position/rotation targets."""
# Interpret actions as target pos displacements and set pos target
pos_actions = actions[:, 0:3]
if do_scale:
pos_actions = pos_actions @ torch.diag(
torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device)
)
self.ctrl_target_fingertip_centered_pos = (
self.fingertip_centered_pos + pos_actions
)
# Interpret actions as target rot (axis-angle) displacements
rot_actions = actions[:, 3:6]
if do_scale:
rot_actions = rot_actions @ torch.diag(
torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device)
)
# Convert to quat and set rot target
angle = torch.norm(rot_actions, p=2, dim=-1)
axis = rot_actions / angle.unsqueeze(-1)
rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis)
if self.cfg_task.rl.clamp_rot:
rot_actions_quat = torch.where(
angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh,
rot_actions_quat,
torch.tensor([0.0, 0.0, 0.0, 1.0], device=self.device).repeat(
self.num_envs, 1
),
)
self.ctrl_target_fingertip_centered_quat = torch_utils.quat_mul(
rot_actions_quat, self.fingertip_centered_quat
)
self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos
self.generate_ctrl_signals()
def _move_gripper_to_grasp_pose(self, sim_steps):
"""Define grasp pose for plug and move gripper to pose."""
# Set target_pos
self.ctrl_target_fingertip_midpoint_pos = self.plug_pos.clone()
self.ctrl_target_fingertip_midpoint_pos[:, 2] += self.plug_grasp_offsets
# Set target rot
ctrl_target_fingertip_centered_euler = (
torch.tensor(
self.cfg_task.randomize.fingertip_centered_rot_initial,
device=self.device,
)
.unsqueeze(0)
.repeat(self.num_envs, 1)
)
self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz(
ctrl_target_fingertip_centered_euler[:, 0],
ctrl_target_fingertip_centered_euler[:, 1],
ctrl_target_fingertip_centered_euler[:, 2],
)
self.move_gripper_to_target_pose(
gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max,
sim_steps=sim_steps,
)
# Reset plug in case it is knocked away by gripper movement
self._reset_plug(before_move_to_grasp=False)