-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathrt2.py
118 lines (99 loc) · 4.13 KB
/
rt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from PIL import Image
from functools import reduce
import numpy as np
import time
class vec3():
def __init__(self, x, y, z):
(self.x, self.y, self.z) = (x, y, z)
def __mul__(self, other):
return vec3(self.x * other, self.y * other, self.z * other)
def __add__(self, other):
return vec3(self.x + other.x, self.y + other.y, self.z + other.z)
def __sub__(self, other):
return vec3(self.x - other.x, self.y - other.y, self.z - other.z)
def dot(self, other):
return (self.x * other.x) + (self.y * other.y) + (self.z * other.z)
def __abs__(self):
return self.dot(self)
def norm(self):
mag = np.sqrt(abs(self))
return self * (1.0 / np.where(mag == 0, 1, mag))
def components(self):
return (self.x, self.y, self.z)
rgb = vec3
(w, h) = (400, 300) # Screen size
L = vec3(5, 5., -10) # Point light position
E = vec3(0., 0.35, -1.) # Eye position
FARAWAY = 1.0e39 # an implausibly huge distance
def raytrace(O, D, scene, bounce = 0):
# O is the ray origin, D is the normalized ray direction
# scene is a list of Sphere objects (see below)
# bounce is the number of the bounce, starting at zero for camera rays
distances = [s.intersect(O, D) for s in scene]
nearest = reduce(np.minimum, distances)
color = rgb(0, 0, 0)
for (s, d) in zip(scene, distances):
color += s.light(O, D, d, scene, bounce) * (nearest != FARAWAY) * (d == nearest)
return color
class Sphere:
def __init__(self, center, r, diffuse, mirror = 0.5):
self.c = center
self.r = r
self.diffuse = diffuse
self.mirror = mirror
def intersect(self, O, D):
b = 2 * D.dot(O - self.c)
c = abs(self.c) + abs(O) - 2 * self.c.dot(O) - (self.r * self.r)
disc = (b ** 2) - (4 * c)
sq = np.sqrt(np.maximum(0, disc))
h0 = (-b - sq) / 2
h1 = (-b + sq) / 2
h = np.where((h0 > 0) & (h0 < h1), h0, h1)
pred = (disc > 0) & (h > 0)
return np.where(pred, h, FARAWAY)
def diffusecolor(self, M):
return self.diffuse
def light(self, O, D, d, scene, bounce):
M = (O + D * d) # intersection point
N = (M - self.c) * (1. / self.r) # normal
toL = (L - M).norm() # direction to light
toO = (E - M).norm() # direction to ray origin
nudged = M + N * .0001 # M nudged to avoid itself
# Shadow: find if the point is shadowed or not.
light_distances = [s.intersect(nudged, toL) for s in scene]
light_nearest = reduce(np.minimum, light_distances)
seelight = light_distances[scene.index(self)] == light_nearest
# Ambient
color = rgb(0.05, 0.05, 0.05)
# Lambert shading (diffuse)
lv = np.maximum(N.dot(toL), 0)
color += self.diffusecolor(M) * lv * seelight
# Reflection
if bounce < 2:
rayD = (D - N * 2 * D.dot(N)).norm()
color += raytrace(nudged, rayD, scene, bounce + 1) * self.mirror
# Blinn-Phong shading (specular)
phong = N.dot((toL + toO).norm())
color += rgb(1, 1, 1) * np.power(np.clip(phong, 0, 1), 50) * seelight
return color
class CheckeredSphere(Sphere):
def diffusecolor(self, M):
checker = ((M.x * 2).astype(int) % 2) == ((M.z * 2).astype(int) % 2)
return self.diffuse * checker
scene = [
Sphere(vec3(.75, .1, 1.), .6, rgb(0, 0, 1)),
Sphere(vec3(-.75, .1, 2.25), .6, rgb(.5, .223, .5)),
Sphere(vec3(-2.75, .1, 3.5), .6, rgb(1., .572, .184)),
CheckeredSphere(vec3(0,-99999.5, 0), 99999, rgb(.75, .75, .75), 0.25),
]
r = float(w) / h
# Screen coordinates: x0, y0, x1, y1.
S = (-1., 1. / r + .25, 1., -1. / r + .25)
x = np.tile(np.linspace(S[0], S[2], w), h)
y = np.repeat(np.linspace(S[1], S[3], h), w)
t0 = time.time()
Q = vec3(x, y, 0)
color = raytrace(E, (Q - E).norm(), scene)
print("Took", time.time() - t0)
rgb = [Image.fromarray((255 * np.clip(c, 0, 1).reshape((h, w))).astype(np.uint8), "L") for c in color.components()]
Image.merge("RGB", rgb).save("rt2.png")