-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabstract_ring.py
1359 lines (1082 loc) · 46.7 KB
/
abstract_ring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
r"""
Graded rings of modular forms for Hecke triangle groups
AUTHORS:
- Jonas Jermann (2013): initial version
"""
#*****************************************************************************
# Copyright (C) 2013-2014 Jonas Jermann <[email protected]>
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
# http://www.gnu.org/licenses/
#*****************************************************************************
from sage.rings.all import FractionField, PolynomialRing, ZZ, QQ, infinity
from sage.algebras.free_algebra import FreeAlgebra
from sage.structure.parent import Parent
from sage.misc.cachefunc import cached_method
from hecke_triangle_groups import HeckeTriangleGroup
from constructor import FormsRing, FormsSpace, rational_type
# Maybe replace Parent by just SageObject?
class FormsRing_abstract(Parent):
r"""
Abstract (Hecke) forms ring.
This should never be called directly. Instead one should
instantiate one of the derived classes of this class.
"""
from graded_ring_element import FormsRingElement
Element = FormsRingElement
from analytic_type import AnalyticType
AT = AnalyticType()
def __init__(self, group, base_ring, red_hom):
r"""
Abstract (Hecke) forms ring.
INPUT:
- ``group`` - The Hecke triangle group (default: ``HeckeTriangleGroup(3)``)
- ``base_ring`` - The base_ring (default: ``ZZ``).
- ``red_hom`` - If True then results of binary operations are considered
homogeneous whenever it makes sense (default: False).
This is mainly used by the (Hecke) forms.
OUTPUT:
The corresponding abstract (Hecke) forms ring.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: MR = ModularFormsRing(group=5, base_ring=ZZ, red_hom=True)
sage: MR
ModularFormsRing(n=5) over Integer Ring
sage: MR.group()
Hecke triangle group for n = 5
sage: MR.base_ring()
Integer Ring
sage: MR.has_reduce_hom()
True
sage: MR.is_homogeneous()
False
"""
from graded_ring import canonical_parameters
(group, base_ring, red_hom) = canonical_parameters(group, base_ring, red_hom)
if (group == infinity):
raise NotImplementedError
#if (not group.is_arithmetic() and base_ring.characteristic()>0):
# raise NotImplementedError
#if (base_ring.characteristic().divides(2*group.n()*(group.n()-2))):
# raise NotImplementedError
if (base_ring.characteristic() > 0):
raise NotImplementedError
self._group = group
self._red_hom = red_hom
self._base_ring = base_ring
self._coeff_ring = FractionField(PolynomialRing(base_ring,'d'))
self._pol_ring = PolynomialRing(base_ring,'x,y,z,d')
self._rat_field = FractionField(self._pol_ring)
# default values
self._weight = None
self._ep = None
self._analytic_type = self.AT(["quasi", "mero"])
self.default_prec(10)
self.disp_prec(5)
self.default_num_prec(53)
#super(FormsRing_abstract, self).__init__(self.coeff_ring())
def _repr_(self):
r"""
Return the string representation of ``self``.
EXAMPLES::
sage: from graded_ring import QModularFormsRing
sage: QModularFormsRing(group=4)
QuasiModularFormsRing(n=4) over Integer Ring
"""
return "{}FormsRing(n={}) over {}".format(self._analytic_type.analytic_space_name(), self._group.n(), self._base_ring)
def _latex_(self):
r"""
Return the LaTeX representation of ``self``.
EXAMPLES::
sage: from graded_ring import QWeakModularFormsRing
sage: latex(QWeakModularFormsRing())
\mathcal{ QM^! }_{n=3}(\Bold{Z})
"""
from sage.misc.latex import latex
return "\\mathcal{{ {} }}_{{n={}}}({})".format(self._analytic_type.latex_space_name(), self._group.n(), latex(self._base_ring))
def _element_constructor_(self, x):
r"""
Return ``x`` coerced/converted into this forms ring.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: MR = ModularFormsRing()
sage: (x,y,z,d) = MR.pol_ring().gens()
sage: MR(x^3)
f_rho^3
sage: el = MR.Delta().full_reduce()
sage: MR(el)
f_rho^3*d - f_i^2*d
sage: el.parent() == MR
False
sage: MR(el).parent() == MR
True
"""
from graded_ring_element import FormsRingElement
if isinstance(x, FormsRingElement):
x = self._rat_field(x._rat)
else:
x = self._rat_field(x)
return self.element_class(self, x)
def _coerce_map_from_(self, S):
r"""
Return whether or not there exists a coercion from ``S`` to ``self``.
EXAMPLES::
sage: from graded_ring import QWeakModularFormsRing, ModularFormsRing, CuspFormsRing
sage: MR1 = QWeakModularFormsRing(base_ring=CC)
sage: MR2 = ModularFormsRing()
sage: MR3 = CuspFormsRing()
sage: MR3.has_coerce_map_from(MR2)
False
sage: MR1.has_coerce_map_from(MR2)
True
sage: MR2.has_coerce_map_from(MR3)
True
sage: MR3.has_coerce_map_from(ZZ)
False
sage: MR1.has_coerce_map_from(ZZ)
True
sage: from space import ModularForms, CuspForms
sage: MF2 = ModularForms(k=6, ep=-1)
sage: MF3 = CuspForms(k=12, ep=1)
sage: MR1.has_coerce_map_from(MF2)
True
sage: MR2.has_coerce_map_from(MF3)
True
"""
from space import FormsSpace_abstract
if ( isinstance(S, FormsRing_abstract)\
and self._group == S._group\
and self._analytic_type >= S._analytic_type\
and self.base_ring().has_coerce_map_from(S.base_ring()) ):
return True
# TODO: This case never occurs: remove it?
elif isinstance(S, FormsSpace_abstract):
return self._coerce_map_from_(S.graded_ring())
elif (self.AT("holo") <= self._analytic_type) and (self.coeff_ring().has_coerce_map_from(S)):
return True
else:
return False
def _an_element_(self):
r"""
Return an element of ``self``.
EXAMPLES::
sage: from graded_ring import CuspFormsRing
sage: from space import WeakModularForms
sage: CuspFormsRing().an_element()
f_rho^3*d - f_i^2*d
sage: CuspFormsRing().an_element() == CuspFormsRing().Delta()
True
sage: WeakModularForms().an_element()
O(q^5)
sage: WeakModularForms().an_element() == WeakModularForms().zero()
True
"""
return self(self.Delta())
def default_prec(self, prec = None):
r"""
Set the default precision ``prec`` for the Fourier expansion.
If ``prec=None`` (default) then the current default precision is returned instead.
Note: This is also used as the default precision for
the Fourier expansion when evaluating forms.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: from space import ModularForms
sage: MR = ModularFormsRing()
sage: MR.default_prec(3)
sage: MR.default_prec()
3
sage: MR.Delta().q_expansion_fixed_d()
q - 24*q^2 + O(q^3)
sage: MF = ModularForms(k=4)
sage: MF.default_prec(2)
sage: MF.E4()
1 + 240*q + O(q^2)
sage: MF.default_prec()
2
"""
if (prec is not None):
self._prec = ZZ(prec)
else:
return self._prec
def disp_prec(self, prec = None):
r"""
Set the maximal display precision to ``prec``.
If ``prec="max"`` the precision is set to the default precision.
If ``prec=None`` (default) then the current display precision is returned instead.
Note: This is used for displaying/representing (elements of)
``self`` as Fourier expansions.
EXAMPLES::
sage: from space import ModularForms
sage: MF = ModularForms(k=4)
sage: MF.default_prec(5)
sage: MF.disp_prec(3)
sage: MF.disp_prec()
3
sage: MF.E4()
1 + 240*q + 2160*q^2 + O(q^3)
sage: MF.disp_prec("max")
sage: MF.E4()
1 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + O(q^5)
"""
if (prec == "max"):
self._disp_prec = self._prec;
elif (prec is not None):
self._disp_prec = ZZ(prec)
else:
return self._disp_prec
def default_num_prec(self, prec = None):
r"""
Set the default numerical precision to ``prec`` (default: ``53``).
If ``prec=None`` (default) the current default numerical
precision is returned instead.
EXAMPLES::
sage: from space import ModularForms
sage: MF = ModularForms(k=6)
sage: MF.default_prec(20)
sage: MF.default_num_prec(10)
sage: MF.default_num_prec()
10
sage: E6 = MF.E6()
sage: E6(i) # rel tol 1e-4
-0.0020
sage: MF.default_num_prec(100)
sage: E6(i) # rel tol 1e-25
0.00000000000000000000000000000
sage: MF = ModularForms(group=5, k=4/3)
sage: F_rho = MF.F_rho()
sage: F_rho.q_expansion(prec=2)[1]
7/(100*d)
sage: MF.default_num_prec(10)
sage: F_rho.q_expansion_fixed_d(prec=2)[1] # rel tol 1e-1
9.9
sage: MF.default_num_prec(100)
sage: F_rho.q_expansion_fixed_d(prec=2)[1] # rel tol 1e-25
9.9259324351079591527601778294
"""
if (prec is not None):
self._num_prec = ZZ(prec)
else:
return self._num_prec
def change_ring(self, new_base_ring):
r"""
Return the same space as ``self`` but over a new base ring ``new_base_ring``.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing().change_ring(CC)
ModularFormsRing(n=3) over Complex Field with 53 bits of precision
"""
return self.__class__.__base__(self._group, new_base_ring, self._red_hom)
def graded_ring(self):
r"""
Return the graded ring containing ``self``.
EXAMPLES::
sage: from graded_ring import ModularFormsRing, CuspFormsRing
sage: from space import CuspForms
sage: MR = ModularFormsRing(group=5)
sage: MR.graded_ring() == MR
True
sage: CF=CuspForms(k=12)
sage: CF.graded_ring() == CuspFormsRing()
False
sage: CF.graded_ring() == CuspFormsRing(red_hom=True)
True
sage: CF.subspace([CF.Delta()]).graded_ring() == CuspFormsRing(red_hom=True)
True
"""
return self.extend_type(ring=True)
def extend_type(self, analytic_type=None, ring=False):
r"""
Return a new space which contains (elements of) ``self`` with the analytic type
of ``self`` extended by ``analytic_type``, possibly extended to a graded ring
in case ``ring`` is ``True``.
INPUT:
- ``analytic_type`` - An ``AnalyticType`` or something which coerces into it (default: ``None``).
- ``ring`` - Whether to extend to a graded ring (default: ``False``).
OUTPUT:
The new extended space.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: from space import CuspForms
sage: MR = ModularFormsRing(group=5)
sage: MR.extend_type(["quasi", "weak"])
QuasiWeakModularFormsRing(n=5) over Integer Ring
sage: CF=CuspForms(k=12)
sage: CF.extend_type("holo")
ModularForms(n=3, k=12, ep=1) over Integer Ring
sage: CF.extend_type("quasi", ring=True)
QuasiCuspFormsRing(n=3) over Integer Ring
sage: CF.subspace([CF.Delta()]).extend_type()
CuspForms(n=3, k=12, ep=1) over Integer Ring
"""
if analytic_type == None:
analytic_type = self._analytic_type
else:
analytic_type = self._analytic_type.extend_by(analytic_type)
if (ring or not self.is_homogeneous()):
return FormsRing(analytic_type, group=self.group(), base_ring=self.base_ring(), red_hom=self.has_reduce_hom())
else:
return FormsSpace(analytic_type, group=self.group(), base_ring=self.base_ring(), k=self.weight(), ep=self.ep())
def reduce_type(self, analytic_type=None, degree=None):
r"""
Return a new space with analytic properties shared by both ``self`` and ``analytic_type``,
possibly reduced to its homogeneous space of the given ``degree`` (if ``degree`` is set).
Elements of the new space are contained in ``self``.
INPUT:
- ``analytic_type`` - An ``AnalyticType`` or something which coerces into it (default: ``None``).
- ``degree`` - ``None`` (default) or the degree of the homogeneous component to which
``self`` should be reduced.
OUTPUT:
The new reduced space.
EXAMPLES::
sage: from graded_ring import QModularFormsRing
sage: from space import QModularForms
sage: MR = QModularFormsRing()
sage: MR.reduce_type(["quasi", "cusp"])
QuasiCuspFormsRing(n=3) over Integer Ring
sage: MR.reduce_type("cusp", degree=(12,1))
CuspForms(n=3, k=12, ep=1) over Integer Ring
sage: MF=QModularForms(k=6)
sage: MF.reduce_type("holo")
ModularForms(n=3, k=6, ep=-1) over Integer Ring
sage: MF.reduce_type([])
ZeroForms(n=3, k=6, ep=-1) over Integer Ring
"""
if analytic_type == None:
analytic_type = self._analytic_type
else:
analytic_type = self._analytic_type.reduce_to(analytic_type)
if (degree == None and not self.is_homogeneous()):
return FormsRing(analytic_type, group=self.group(), base_ring=self.base_ring(), red_hom=self.has_reduce_hom())
elif (degree == None):
return FormsSpace(analytic_type, group=self.group(), base_ring=self.base_ring(), k=self.weight(), ep=self.ep())
else:
(weight, ep) = degree
if (self.is_homogeneous() and (weight != self.weight() or ep!=self.ep())):
analytic_type = self._analytic_type.reduce_to([])
return FormsSpace(analytic_type, group=self.group(), base_ring=self.base_ring(), k=weight, ep=ep)
def construction(self):
r"""
Return a functor that constructs ``self`` (used by the coercion machinery).
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing().construction()
(ModularFormsRingFunctor(n=3), BaseFacade(Integer Ring))
"""
from functors import FormsRingFunctor, BaseFacade
return FormsRingFunctor(self._analytic_type, self._group, self._red_hom), BaseFacade(self._base_ring)
@cached_method
def group(self):
r"""
Return the (Hecke triangle) group of ``self``.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: MR = ModularFormsRing(group=7)
sage: MR.group()
Hecke triangle group for n = 7
sage: from space import CuspForms
sage: CF = CuspForms(group=7, k=4/5)
sage: CF.group()
Hecke triangle group for n = 7
"""
return self._group
@cached_method
def hecke_n(self):
r"""
Return the parameter ``n`` of the
(Hecke triangle) group of ``self``.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: MR = ModularFormsRing(group=7)
sage: MR.hecke_n()
7
sage: from space import CuspForms
sage: CF = CuspForms(group=7, k=4/5)
sage: CF.hecke_n()
7
"""
return self._group.n()
@cached_method
def base_ring(self):
r"""
Return base ring of ``self``.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing().base_ring()
Integer Ring
sage: from space import CuspForms
sage: CuspForms(k=12, base_ring=AA).base_ring()
Algebraic Real Field
"""
return self._base_ring
@cached_method
def coeff_ring(self):
r"""
Return coefficient ring of ``self``.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing().coeff_ring()
Fraction Field of Univariate Polynomial Ring in d over Integer Ring
sage: from space import CuspForms
sage: CuspForms(k=12, base_ring=AA).coeff_ring()
Fraction Field of Univariate Polynomial Ring in d over Algebraic Real Field
"""
return self._coeff_ring
@cached_method
def pol_ring(self):
r"""
Return the underlying polynomial ring used
by ``self``.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing().pol_ring()
Multivariate Polynomial Ring in x, y, z, d over Integer Ring
sage: from space import CuspForms
sage: CuspForms(k=12, base_ring=AA).pol_ring()
Multivariate Polynomial Ring in x, y, z, d over Algebraic Real Field
"""
return self._pol_ring
@cached_method
def rat_field(self):
r"""
Return the underlying rational field used by
``self`` to construct/represent elements.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing().rat_field()
Fraction Field of Multivariate Polynomial Ring in x, y, z, d over Integer Ring
sage: from space import CuspForms
sage: CuspForms(k=12, base_ring=AA).rat_field()
Fraction Field of Multivariate Polynomial Ring in x, y, z, d over Algebraic Real Field
"""
return self._rat_field
@cached_method
def diff_alg(self):
r"""
Return the algebra of differential operators
(over QQ) which is used on rational functions
representing elements of ``self``.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing().diff_alg()
Noncommutative Multivariate Polynomial Ring in X, Y, Z, dX, dY, dZ over Rational Field, nc-relations: {dY*Y: Y*dY + 1, dZ*Z: Z*dZ + 1, dX*X: X*dX + 1}
sage: from space import CuspForms
sage: CuspForms(k=12, base_ring=AA).diff_alg()
Noncommutative Multivariate Polynomial Ring in X, Y, Z, dX, dY, dZ over Rational Field, nc-relations: {dY*Y: Y*dY + 1, dZ*Z: Z*dZ + 1, dX*X: X*dX + 1}
"""
# We only use two operators for now which do not involve 'd', so for performance
# reason we choose FractionField(base_ring) instead of self.coeff_ring().
free_alg = FreeAlgebra(FractionField(ZZ),6,'X,Y,Z,dX,dY,dZ')
(X,Y,Z,dX,dY,dZ) = free_alg.gens()
diff_alg = free_alg.g_algebra({dX*X:1+X*dX,dY*Y:1+Y*dY,dZ*Z:1+Z*dZ})
return diff_alg
@cached_method
def _derivative_op(self):
r"""
Return the differential operator in ``self.diff_alg()``
corresponding to the derivative of forms.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing(group=7)._derivative_op()
-1/2*X^6*dY - 5/28*X^5*dZ + 1/7*X*Z*dX + 1/2*Y*Z*dY + 5/28*Z^2*dZ - 1/7*Y*dX
"""
(X,Y,Z,dX,dY,dZ) = self.diff_alg().gens()
return 1/self._group.n() * (X*Z-Y)*dX\
+ ZZ(1)/ZZ(2) * (Y*Z-X**(self._group.n()-1))*dY\
+ (self._group.n()-2) / (4*self._group.n()) * (Z**2-X**(self._group.n()-2))*dZ
@cached_method
def _serre_derivative_op(self):
r"""
Return the differential operator in ``self.diff_alg()``
corresponding to the serre derivative of forms.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing(group=8)._serre_derivative_op()
-1/2*X^7*dY - 3/16*X^6*dZ - 3/16*Z^2*dZ - 1/8*Y*dX
"""
(X,Y,Z,dX,dY,dZ) = self.diff_alg().gens()
return - 1/self._group.n() * Y*dX\
- ZZ(1)/ZZ(2) * X**(self._group.n()-1)*dY\
- (self._group.n()-2) / (4*self._group.n()) * (Z**2+X**(self._group.n()-2))*dZ
@cached_method
def has_reduce_hom(self):
r"""
Return whether the method ``reduce`` should reduce
homogeneous elements to the corresponding homogeneous space.
This is mainly used by binary operations on homogeneous
spaces which temporarily produce an element of ``self``
but want to consider it as a homogeneous element
(also see ``reduce``).
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing().has_reduce_hom()
False
sage: ModularFormsRing(red_hom=True).has_reduce_hom()
True
sage: from space import ModularForms
sage: ModularForms(k=6).has_reduce_hom()
True
sage: ModularForms(k=6).graded_ring().has_reduce_hom()
True
"""
return self._red_hom
def is_homogeneous(self):
r"""
Return whether ``self`` is homogeneous component.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing().is_homogeneous()
False
sage: from space import ModularForms
sage: ModularForms(k=6).is_homogeneous()
True
"""
return self._weight != None
def is_modular(self):
r"""
Return whether ``self`` only contains modular elements.
EXAMPLES::
sage: from graded_ring import QWeakModularFormsRing, CuspFormsRing
sage: QWeakModularFormsRing().is_modular()
False
sage: CuspFormsRing(group=7).is_modular()
True
sage: from space import QWeakModularForms, CuspForms
sage: QWeakModularForms(k=10).is_modular()
False
sage: CuspForms(group=7, k=12, base_ring=AA).is_modular()
True
"""
return not (self.AT("quasi") <= self._analytic_type)
def is_weakly_holomorphic(self):
r"""
Return whether ``self`` only contains weakly
holomorphic modular elements.
EXAMPLES::
sage: from graded_ring import QMModularFormsRing, QWeakModularFormsRing, CuspFormsRing
sage: QMModularFormsRing().is_weakly_holomorphic()
False
sage: QWeakModularFormsRing().is_weakly_holomorphic()
True
sage: from space import MModularForms, CuspForms
sage: MModularForms(k=10).is_weakly_holomorphic()
False
sage: CuspForms(group=7, k=12, base_ring=AA).is_weakly_holomorphic()
True
"""
return (self.AT("weak", "quasi") >= self._analytic_type)
def is_holomorphic(self):
r"""
Return whether ``self`` only contains holomorphic
modular elements.
EXAMPLES::
sage: from graded_ring import QWeakModularFormsRing, QModularFormsRing
sage: QWeakModularFormsRing().is_holomorphic()
False
sage: QModularFormsRing().is_holomorphic()
True
sage: from space import WeakModularForms, CuspForms
sage: WeakModularForms(k=10).is_holomorphic()
False
sage: CuspForms(group=7, k=12, base_ring=AA).is_holomorphic()
True
"""
return (self.AT("holo", "quasi") >= self._analytic_type)
def is_cuspidal(self):
r"""
Return whether ``self`` only contains cuspidal elements.
EXAMPLES::
sage: from graded_ring import QModularFormsRing, QCuspFormsRing
sage: QModularFormsRing().is_cuspidal()
False
sage: QCuspFormsRing().is_cuspidal()
True
sage: from space import ModularForms, QCuspForms
sage: ModularForms(k=12).is_cuspidal()
False
sage: QCuspForms(k=12).is_cuspidal()
True
"""
return (self.AT("cusp", "quasi") >= self._analytic_type)
def is_zerospace(self):
r"""
Return whether ``self`` is the (0-dimensional) zero space.
EXAMPLES::
sage: from graded_ring import ModularFormsRing
sage: ModularFormsRing().is_zerospace()
False
sage: from space import ModularForms, CuspForms
sage: ModularForms(k=12).is_zerospace()
False
sage: CuspForms(k=12).reduce_type([]).is_zerospace()
True
"""
return (self.AT(["quasi"]) >= self._analytic_type)
def analytic_type(self):
r"""
Return the analytic type of ``self``.
EXAMPLES::
sage: from graded_ring import QMModularFormsRing, QWeakModularFormsRing
sage: QMModularFormsRing().analytic_type()
quasi meromorphic modular
sage: QWeakModularFormsRing().analytic_type()
quasi weakly holomorphic modular
sage: from space import MModularForms, CuspForms
sage: MModularForms(k=10).analytic_type()
meromorphic modular
sage: CuspForms(group=7, k=12, base_ring=AA).analytic_type()
cuspidal
"""
return self._analytic_type
def homogeneous_space(self, k, ep):
r"""
Return the homogeneous component of degree (``k``, ``e``) of ``self``.
EXAMPLES::
sage: from graded_ring import QMModularFormsRing, QWeakModularFormsRing
sage: QMModularFormsRing(group=7).homogeneous_space(k=2, ep=-1)
QuasiMeromorphicModularForms(n=7, k=2, ep=-1) over Integer Ring
"""
return self.reduce_type(degree = (k,ep))
@cached_method
def J_inv(self):
r"""
Return the J-invariant (Hauptmodul) of the group of ``self``.
It is normalized such that ``J_inv(infinity) = infinity``,
it has real Fourier coefficients starting with ``d > 0`` and ``J_inv(i) = 1``
It lies in a (weak) extension of the graded ring of ``self``.
In case ``has_reduce_hom`` is ``True`` it is given as an element of
the corresponding homogeneous space.
EXAMPLES::
sage: from graded_ring import QMModularFormsRing, WeakModularFormsRing, CuspFormsRing
sage: MR = WeakModularFormsRing(group=7)
sage: J_inv = MR.J_inv()
sage: J_inv in MR
True
sage: CuspFormsRing(group=7).J_inv() == J_inv
True
sage: J_inv
f_rho^7/(f_rho^7 - f_i^2)
sage: QMModularFormsRing(group=7).J_inv() == QMModularFormsRing(group=7)(J_inv)
True
sage: from space import WeakModularForms, CuspForms
sage: MF = WeakModularForms(group=5, k=0)
sage: J_inv = MF.J_inv()
sage: J_inv in MF
True
sage: WeakModularFormsRing(group=5, red_hom=True).J_inv() == J_inv
True
sage: CuspForms(group=5, k=12).J_inv() == J_inv
True
sage: MF.disp_prec(3)
sage: J_inv
d*q^-1 + 79/200 + 42877/(640000*d)*q + 12957/(2000000*d^2)*q^2 + O(q^3)
sage: WeakModularForms().J_inv()
1/1728*q^-1 + 31/72 + 1823/16*q + 335840/27*q^2 + 16005555/32*q^3 + 11716352*q^4 + O(q^5)
"""
(x,y,z,d) = self._pol_ring.gens()
return self.extend_type("weak", ring=True)(x**self._group.n()/(x**self._group.n()-y**2)).reduce()
@cached_method
def j_inv(self):
r"""
Return the j-invariant (Hauptmodul) of the group of ``self``.
It is normalized such that ``j_inv(infinity) = infinity``,
and such that it has real Fourier coefficients starting with ``1``.
It lies in a (weak) extension of the graded ring of ``self``.
In case ``has_reduce_hom`` is ``True`` it is given as an element of
the corresponding homogeneous space.
EXAMPLES::
sage: from graded_ring import QMModularFormsRing, WeakModularFormsRing, CuspFormsRing
sage: MR = WeakModularFormsRing(group=7)
sage: j_inv = MR.j_inv()
sage: j_inv in MR
True
sage: CuspFormsRing(group=7).j_inv() == j_inv
True
sage: j_inv
f_rho^7/(f_rho^7*d - f_i^2*d)
sage: QMModularFormsRing(group=7).j_inv() == QMModularFormsRing(group=7)(j_inv)
True
sage: from space import WeakModularForms, CuspForms
sage: MF = WeakModularForms(group=5, k=0)
sage: j_inv = MF.j_inv()
sage: j_inv in MF
True
sage: WeakModularFormsRing(group=5, red_hom=True).j_inv() == j_inv
True
sage: CuspForms(group=5, k=12).j_inv() == j_inv
True
sage: MF.disp_prec(3)
sage: j_inv
q^-1 + 79/(200*d) + 42877/(640000*d^2)*q + 12957/(2000000*d^3)*q^2 + O(q^3)
sage: WeakModularForms().j_inv()
q^-1 + 744 + 196884*q + 21493760*q^2 + 864299970*q^3 + 20245856256*q^4 + O(q^5)
"""
(x,y,z,d) = self._pol_ring.gens()
return self.extend_type("weak", ring=True)(1/d*x**self._group.n()/(x**self._group.n()-y**2)).reduce()
@cached_method
def F_rho(self):
r"""
Return the generator ``F_rho`` of the graded ring of ``self``.
Up to the group action ``F_rho`` has exactly one simple zero at ``rho``. ``F_rho`` is
normalized such that its first nontrivial Fourier coefficient is ``1``.
The polynomial variable ``x`` exactly corresponds to ``F_rho``.
It lies in a (cuspidal) extension of the graded ring of ``self``.
In case ``has_reduce_hom`` is ``True`` it is given as an element of
the corresponding homogeneous space.
EXAMPLES::
sage: from graded_ring import QMModularFormsRing, ModularFormsRing, CuspFormsRing
sage: MR = ModularFormsRing(group=7)
sage: F_rho = MR.F_rho()
sage: F_rho in MR
True
sage: CuspFormsRing(group=7).F_rho() == F_rho
True
sage: F_rho
f_rho
sage: QMModularFormsRing(group=7).F_rho() == QMModularFormsRing(group=7)(F_rho)
True
sage: from space import ModularForms, CuspForms
sage: MF = ModularForms(group=5, k=4/3)
sage: F_rho = MF.F_rho()
sage: F_rho in MF
True
sage: ModularFormsRing(group=5, red_hom=True).F_rho() == F_rho
True
sage: CuspForms(group=5, k=12).F_rho() == F_rho
True
sage: MF.disp_prec(3)
sage: F_rho
1 + 7/(100*d)*q + 21/(160000*d^2)*q^2 + O(q^3)
sage: ModularForms(k=4).F_rho() == ModularForms(k=4).E4()
True
sage: ModularForms(k=4).F_rho()
1 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + O(q^5)
"""
(x,y,z,d) = self._pol_ring.gens()
return self.extend_type("holo", ring=True)(x).reduce()
@cached_method
def F_i(self):
r"""
Return the generator ``F_i`` of the graded ring of ``self``.
Up to the group action ``F_i`` has exactly one simple zero at ``i``. ``F_i`` is
normalized such that its first nontrivial Fourier coefficient is ``1``.
The polynomial variable ``y`` exactly corresponds to ``F_i``.
It lies in a (holomorphic) extension of the graded ring of ``self``.
In case ``has_reduce_hom`` is ``True`` it is given as an element of
the corresponding homogeneous space.
EXAMPLES::
sage: from graded_ring import QMModularFormsRing, ModularFormsRing, CuspFormsRing
sage: MR = ModularFormsRing(group=7)
sage: F_i = MR.F_i()
sage: F_i in MR
True
sage: CuspFormsRing(group=7).F_i() == F_i
True
sage: F_i
f_i
sage: QMModularFormsRing(group=7).F_i() == QMModularFormsRing(group=7)(F_i)
True
sage: from space import ModularForms, CuspForms