-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdevinPlotterBNG.py
304 lines (263 loc) · 11 KB
/
devinPlotterBNG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# -*- coding: utf-8 -*-
"""
Created on Thurs Dec 4 2014
@author: Devin P Sullivan
"""
import matplotlib
matplotlib.use('Agg')
import pylab
import matplotlib.pyplot as pyplot
import os
import numpy
import fnmatch
import re
from collections import defaultdict
def get_immediate_subdirectories(a_dir,substr):
namelist = []
for name in os.listdir(a_dir):
#print(name)
if substr not in name: continue
fullpath = os.path.join(a_dir,name)
#print(fullpath)
if os.path.isdir(fullpath):
namelist.append(fullpath)
else:
print("could not find directory")
#return [name for name in os.listdir(a_dir)
#if os.path.isdir(os.path.join(a_dir, name))]
return namelist
def getMCellResults(directory):
matches = []
mynames = []
for root, dirnames, filenames in os.walk(directory):
for filename in fnmatch.filter(filenames, '*.dat'):
matches.append(os.path.join(root, filename))
mynames.append(filename)
return matches,mynames
def getResultsFiles(directory,substr):
matches = []
mynames = []
for root, dirnames, filenames in os.walk(directory):
for filename in fnmatch.filter(filenames, substr+'*.gdat'):
#print(filename)
matches.append(os.path.join(root, filename))
mynames.append(filename)
return matches,mynames
def getObservables(reactdir):
seeds = get_immediate_subdirectories(reactdir)
allseeds = [reactdir+x for x in seeds]
datapath,filenames = getResultsFiles(allseeds[0])
return filenames
def parse_gdat(filename):
print('reading file')
print(filename)
#create a dictionary of obserables
observableDict = defaultdict(list)
data = []
sind = 0
#loop through all the seeds performed
arraysize = []
datatmp = pylab.loadtxt(filename)
arraysize.append(numpy.size(datatmp,axis=0))
observableDict[filename].append(datatmp)
print(observableDict[filename])
with open(filename, 'r') as f:
observableNames = f.readline()
observableNames = observableNames.split()
#print(numpy.size(observableDict[f],axis=0))
#print(numpy.size(observableDict[f],axis=1))
#print(numpy.size(observableDict[f],axis=2))
#now average the data for each seed
#convert to a numpy array
#print(data)
#get the minimum size for data
return observableDict,observableNames
if __name__ == "__main__":
#BNGrootpath ='/Users/admin/Dropbox/HighThroughputModeling/BNGLFilesforSim/'
#BNGrootpath ='/Users/admin/MurphyLab/HTM/xmlfiles_t400/'
BNGrootpath ='/Users/admin/MurphyLab/HTM/BNGmanualmatch/'
MCellrootpath = '/Users/admin/MurphyLab/HTM/resultCount_every1000/seed3/'
#rootpath = '/helix/home/usr/ue/6/dpsulliv/NewRuns/MoreCells/FilesToExport/'
#rootpath = '/helix/home/usr/ue/6/dpsulliv/NewRuns/MoreCells/BNGResults/'
substr = "meanEN0_5std_cell_10seed3"
#First lets get the different run directories
MCellrunDirs = get_immediate_subdirectories(MCellrootpath,substr)
print(MCellrunDirs)
#print('oh hey')
savedir = './resultPlotsBNG_mcell_manualmatchWTF/'
try:
os.stat(savedir)
except:
os.mkdir(savedir)
#MCellfullDirs = [x+'/mcell/react_data/' for x in MCellrunDirs]
#print(MCellfullDirs)
observableDict = defaultdict(list)
geomDict = defaultdict(list)
dataDict = defaultdict(list)
#loop through runs
seed_dirs = []
#cmap=['r', 'g', 'b', 'y']
ind = 0
min_len = []
#thefile = open(savedir+"directorylist.txt",'w')
#for rundir in runDirs:
# thefile.write("%s\n" %rundir)
#observableDict,min_lentmp,filenames = getMeanStd(reactdir)
print(BNGrootpath)
BNGfilenames = getResultsFiles(BNGrootpath,"*"+substr)
BNGfilenames = BNGfilenames[0]
NUM_COLORS = 2#len(BNGfilenames)
print(NUM_COLORS)
cm = pylab.get_cmap('gist_rainbow')
cmap = []
for i in range(NUM_COLORS):
cmap.append(cm(1.*i/NUM_COLORS)) # color will now be an RGBA tuple
#min_len.append(min_lentmp)
#geomDict[rundir].append(observableDict)
#sampleDict = geomDict[rundir]
#ind += 1
print(MCellrunDirs)
MCellfilenames = getMCellResults(MCellrunDirs[0])
MCellfilenames = MCellfilenames[0]
#need to isolate observable name for MCell so we can match it with BNGL
Mnames = []
print(MCellfilenames)
for Mfile in MCellfilenames:
filesplits = Mfile.split("/")
namesplit = filesplits[-1].split(".")
Mnames.append(namesplit[0])
#print(Mnames)
#cut to minsize
mean_data = {}
std_data = {}
mu_plus_std = {}
mu_minus_std = {}
#print('printing GD')
#print(geomDict)
#print(sampleDict)
#print(observableDict)
#for datakey in observableDict:
BNGcurrcolor = [float(x) for x in cmap[0]]
MCellcurrcolor = [float(x) for x in cmap[1]]
for datakey in BNGfilenames:
print('printing datakey')
#print(datakey)
print(datakey)
#observableDict,min_len = getMeanStd(reactdir,datakey)
observableDict,observableNames = parse_gdat(datakey)
print(observableNames)
data = observableDict[datakey]#currDict[datakey]
#data2 = [x[0:min_len] for x in data]
#data2 = [numpy.compress(numpy.ones(min_len),x,axis=0) for x in data]
#data2 = [[y[0:min_len] for y in x] for x in data]
dataarray = numpy.array(data)
dataarray = dataarray[0]
#print('printing dataarray')
#print(dataarray)
#print(numpy.size(dataarray,axis=0))
#print(numpy.size(dataarray,axis=1))
# print(numpy.size(dataarray,axis=2))
print('getting time')
time = dataarray[:,0]
print(time)
observableNames = observableNames[2:]#remove "#" and "time" observables
print(len(observableNames))
dataarray = dataarray[:,1:] #remove time column
print(type(dataarray))
print(numpy.size(dataarray,axis=1))
print(len(MCellfilenames)) #These should all be the same (34)
for observable,observableName in zip(dataarray.transpose(),observableNames):
print('printing observable')
print(observableName)
pylab.rcParams['figure.figsize'] = 27, 18
pyplot.plot(time,observable,c=BNGcurrcolor)
#Check to find matching substring of mcell names
miter = 0
print("checking mcell")
for Mname,Mfilename in zip(Mnames,MCellfilenames):
print(Mname)
if Mname != observableName:
continue
#When we do find the file with a matching name, look it up and load it
datatmp = pylab.loadtxt(Mfilename)
datatmp = numpy.array(datatmp)
print(datatmp)
meandata = numpy.mean(datatmp,axis=1)
print("mean of data")
print(meandata)
std_data = numpy.std(datatmp,axis=1)
print("std of data")
print(std_data)
#plot the mcell stuff
pyplot.plot(time,meandata,c=MCellcurrcolor)
mu_plus_std = meandata+std_data
pyplot.plot(time,mu_plus_std,'--',c=MCellcurrcolor)
mu_plus_std = None
mu_minus_std = meandata-std_data
pyplot.plot(time,mu_minus_std,'--',c=MCellcurrcolor)
mu_minus_std = None
#pylab.rcParams['figure.figsize'] = 27, 18
#currcolor = [float(x) for x in cmap[ind]]
#pyplot.plot(time,observable,c=currcolor)
#pyplot.show()
pylab.suptitle(observableName+" count plot",fontsize=24)
#pylab.xlabel("Time (s)",fontsize=24)
pylab.xlabel("Time (s)",fontsize=32,fontweight='bold')
pylab.ylabel("Molecule count",fontsize=32,fontweight='bold')
pyplot.tick_params(axis='both',labelsize=32)
savename = datakey.split('/')
savename = savename[-1]
savename = savename + "_" + observableName
#print(savename)
savestring = savedir+substr+observableName#savename[0:len(datakey)-4]+".png"
pylab.savefig(savestring, dpi=72) # dots per inch
pyplot.clf()
print(breakme)
#mean_data[datakey] = numpy.mean(dataarray,axis=0)
#std_data[datakey] = numpy.std(dataarray,axis=0)
#mu_plus_std[datakey] = mean_data[datakey]+std_data[datakey]
#mu_minus_std[datakey] = mean_data[datakey]-std_data[datakey]
# figure size in inches
#pylab.rcParams['figure.figsize'] = 27, 18
#plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
#here we keep the mean_data[:,0] for all the time components, though it shouldn't matter.
#pyplot.plot(mean_data[datakey][:,0],mu_plus_std[datakey][:,1],mean_data[datakey][:,0],mean_data[datakey][:,1],color=ind,mean_data[datakey][:,0],mu_minus_std[datakey][:,1],color=ind)
#print(ind)
#currcolor = [float(x) for x in cmap[ind]]
#print('current color')
#print(currcolor)
#pyplot.plot(mean_data[datakey][:,0],mu_plus_std[datakey][:,1],'--',c=currcolor)
#meanplots.append(pyplot.plot(mean_data[datakey][:,0],mean_data[datakey][:,1],c=currcolor))
#pyplot.plot(mean_data[datakey][:,0],mu_minus_std[datakey][:,1],'--',c=currcolor)
#pyplot.show()
#print(cellname)
#ind += 1
#Plot and save the figure for the given observable (datakey)
#savestring = savedir+datakey[0:len(datakey)-4]+".png"
#0:len(datakey)-4 removes the '.dat'
#pylab.suptitle(datakey[0:len(datakey)-4]+" count plot",fontsize=24)
#pylab.xlabel("Time (s)",fontsize=24)
#pylab.ylabel("Molecule count",fontsize=24)
#pyplot.tick_params(axis='both',labelsize=24)
#pylab.savefig(savestring, dpi=72) # dots per inch
pyplot.clf()
#filename = '/Users/admin/MurphyLab/HTM/FilesToExport/mean_cell5_seed5_files/mcell/react_data/seed_00001/Phos_TF.World.dat'
'''
data = (pylab.loadtxt(filename))
X = data[:,0]#pylab.np.random.normal(0,1,500)
Y = data[:,1]#pylab.np.random.normal(0,1,500)
pyplot.scatter(X,Y)
pyplot.title("Scatter Plot Example")
pyplot.xlabel("X-Axis")
pyplot.ylabel("Y-Axis")
# figure size in inches
pylab.rcParams['figure.figsize'] = 9, 6
pylab.plot(X,Y)
pylab.savefig("graph.png", dpi=72) # dots per inch
#datalist = [ ( pylab.loadtxt(filename), label ) for filename, label in list_of_files ]
#for data, label in datalist:
#pylab.plot( data[:,0], data[:,1], 'k' )
#pylab.legend()
#pylab.title("Title of Plot")
#pylab.xlabel("X Axis Label")
#pylab.ylabel("Y Axis Label")'''