-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimulationEnvironment.py
379 lines (317 loc) · 14.1 KB
/
SimulationEnvironment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
from Helper import radians, degrees, angle, vector, PI, PIx2, GRAVITY
import random
import math
import noise
import time
import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt
HEADLESS = False
if HEADLESS:
import os
os.environ['SDL_VIDEODRIVER'] = 'dummy'
#https://stackoverflow.com/questions/51464455/why-when-import-pygame-it-prints-the-version-and-welcome-message-how-delete-it
import os, sys
with open(os.devnull, 'w') as f:
# disable stdout
oldstdout = sys.stdout
sys.stdout = f
import pymunkoptions
pymunkoptions.options["debug"] = False
import pymunk
import pymunk as pm
from pymunk.pygame_util import DrawOptions
from pymunk.vec2d import Vec2d
import pygame as pg
# enable stdout
sys.stdout = oldstdout
BLACK = (0,0,0,1)
WHITE = (255,255,255,1)
RED = (255,0,0,1)
LIME = (0,255,0,1)
BLUE = (0,0,255,1)
YELLOW = (255,255,0,1)
CYAN = (0,255,255,1)
MAGENTA = (255,0,255,1)
SILVER = (192,192,192,1)
GRAY = (128,128,128,1)
MAROON = (128,0,0,1)
OLIVE = (128,128,0,1)
GREEN = (0,128,0,1)
PURPLE = (128,0,128,1)
TEAL = (0,128,128,1)
NAVY = (0,0,128,1)
ASU_MAROON = (140,29,64,1)
ASU_GOLD = (255,198,39,1)
ALL_COLORS = [BLACK,WHITE,RED,LIME,BLUE,YELLOW,CYAN,MAGENTA,SILVER,GRAY,MAROON,OLIVE,GREEN,PURPLE,TEAL,NAVY,ASU_MAROON,ASU_GOLD]
class Robot:
def __init__(self, mass=1, pos=(0,0), ori=0):
self.mass = mass
# self.max_speed = 15
self.speed = 20
self.max_steering_force = 1
self.max_turn_radians = math.pi/800
self.friction = .05
self.body, self.shape = self.create_pymunk_robot(self.mass)
self.body.position = pos
self.body.angle = ori
self.previous_angle = self.body.angle
self.prior_angular_velocity = 0
self.sensors, self.sensor_angles, self.sensor_range = self.add_sensors()
def create_pymunk_robot(self, mass):
length, width = 20, 30
moment = pm.moment_for_box(mass, (length,width))
body = pm.Body(mass, moment)
corners = [ (-length,-width),
(length,-width),
(length,width),
(-length,width) ]
shape = pm.Poly(body, corners)
shape.filter = pm.ShapeFilter(categories=0b1)
# shape.friction = .5 #seems to have no effect
shape.color = WHITE #TODO make bounding box invisible somehow
return body, shape
def add_sensors(self, sensor_range=150.0):
self.sensor_range = sensor_range
sensor_shapes = []
sensor_end_points = []
sensor_angles = [66,33,0,-33,-66]
for a in sensor_angles:
angle = self.body.angle + math.radians(a)
v = vector(angle)
p = v * sensor_range
sensor_end_points.append(p)
thickness = 1
for p in sensor_end_points:
sensor_shape = pm.Segment(self.body, (0,0), p, thickness)
sensor_shape.color = BLUE
sensor_shape.sensor = True
sensor_shapes.append(sensor_shape)
return sensor_shapes, sensor_angles, sensor_range
class SimulationEnvironment:
def __init__(self):
self.sim_steps = 0 # counter incremented each step for debug
pg.init()
self.screen_width, self.screen_height = 1080, 900
self.screen = pg.display.set_mode((self.screen_width, self.screen_height))
# self.screen.fill(WHITE)
pg.display.set_caption("PyGame Display")
self.clock = pg.time.Clock()
self.space = pm.Space()
self.draw_options = DrawOptions(self.screen)
self.CENTER = (self.screen_width/2, self.screen_height/2)
NORTH, SOUTH, EAST, WEST = math.pi/2, 3*math.pi/2, 0, math.pi # PLEASE ONLY USE EAST AT THIS TIME
self.robot = Robot(mass=20, pos=self.CENTER, ori=EAST)
self.space.add(self.robot.body)
self.space.add(self.robot.shape)
for sensor_shape in self.robot.sensors:
self.space.add(sensor_shape)
self.wall_shapes = self.assemble_walls(self.screen_width, self.screen_height, 180)
self.goal_body, self.goal_shape = self.add_goal()
self.last_goal_position = -1
self.move_goal()
self.time_since_collision = 0
def add_goal(self):
body = pm.Body(1,1)
body.position = 1000,80
radius = 40
shape = pm.Circle(body, radius)
shape.color = BLUE
shape.sensor = True
self.space.add(body, shape)
return body, shape
def move_goal(self):
offset=60
i = random.randint(0,5)
while i == self.last_goal_position:
i = random.randint(0,5)
self.last_goal_position = i
positions = [Vec2d(offset,offset),
Vec2d(self.screen_width-300,self.screen_height/2+200),
Vec2d(self.screen_width-offset, offset),
Vec2d(self.screen_width-offset,400),
Vec2d(offset,self.screen_height-offset),
Vec2d(700, offset)
]
self.goal_body.position = positions[i]
def assemble_walls(self, w, h, u):
wall_shapes = []
parameter_points = [(0,0),(0,h),(w,h),(w,0),(0,0)]
inner_wall1 = [(u,u),(u,h-u),(2*u,h-u),(2*u,u),(u,u)]#,(2*u,2*u),(w-u,2*u)]
inner_wall2 = [(w-u,u),(w-u,2*u),(w-2*u,2*u),(w-2*u,u), (w-u,u)]
corner_wall = [(w-2*u,h),(w,h-2*u)]
wall_points_list = [parameter_points, inner_wall1, inner_wall2, corner_wall]
for wall_points in wall_points_list:
for i in range(len(wall_points)-1):
wall_body, wall_shape = self.build_wall(wall_points[i], wall_points[i+1], thickness=8)
wall_shapes.append(wall_shape)
self.space.add(wall_body, wall_shape)
return wall_shapes
def build_wall(self, point_a, point_b, thickness=5):
body = pm.Body(body_type=pm.Body.STATIC)
shape = pm.Segment(body, point_a, point_b, thickness)
shape.color = GRAY
return body, shape
def _draw_everything(self, velocity=False, steering=True):
self.screen.fill(WHITE)
self.space.debug_draw(self.draw_options)
img_pos, img_ori = self.pm2pgP(self.robot.body.position), degrees(self.robot.body.angle)
self._apply_image_to_robot(img_pos, img_ori)
pm_botPos = self.pm2pgP(self.robot.body.position)
if velocity:
velocity_vector = pm_botPos + self.pm2pgV(self.robot.body.velocity)*5
velocity_line = pg.draw.line(self.screen, RED, pm_botPos, velocity_vector)
if steering:
steering_vector = pm_botPos + self.pm2pgV(self.steering_force)*7.5
steering_line = pg.draw.line(self.screen, GREEN, pm_botPos, steering_vector)
pg.display.flip()
def _apply_image_to_robot(self, pos, angle, damage=False):
# https://stackoverflow.com/questions/4183208/how-do-i-rotate-an-image-around-its-center-using-pygame User: Rabbid76 blitRotate()
if damage:
image = pg.image.load("assets/robot_inverse.png")
else:
image = pg.image.load("assets/robot.png")
originPos = image.get_rect().center
w, h = image.get_size()
box = [pg.math.Vector2(p) for p in [(0, 0), (w, 0), (w, -h), (0, -h)]]
box_rotate = [p.rotate(angle) for p in box]
min_box = (min(box_rotate, key=lambda p: p[0])[0], min(box_rotate, key=lambda p: p[1])[1])
max_box = (max(box_rotate, key=lambda p: p[0])[0], max(box_rotate, key=lambda p: p[1])[1])
pivot = pg.math.Vector2(originPos[0], -originPos[1])
pivot_rotate = pivot.rotate(angle)
pivot_move = pivot_rotate - pivot
origin = (pos[0] - originPos[0] + min_box[0] - pivot_move[0], pos[1] - originPos[1] - max_box[1] + pivot_move[1])
rotated_image = pg.transform.rotate(image, angle)
self.screen.blit(rotated_image, origin)
def _apply_robot_motion(self, steering_direction):
self.steering_force = steering_direction * self.robot.speed
self.robot.body.apply_force_at_world_point(self.steering_force*10, self.robot.body.position)
velocity_mag = la.norm(self.robot.body.velocity)
if velocity_mag > 0: #apply friction
friction = GRAVITY * self.robot.mass * self.robot.friction * -self.robot.body.velocity
self.robot.body.apply_force_at_world_point(friction, self.robot.body.position)
self.robot.body.angular_velocity = self.robot.body.angular_velocity * .95
if self.robot.body.angular_velocity < .00001:
self.robot.body.angular_velocity = 0
if velocity_mag > 2.0: #update orientation
orientation_shift = angle(self.robot.body.velocity) - self.robot.body.angle
orientation_shift = (orientation_shift + PI) % (2*PI) - PI
if abs(orientation_shift) > .1:
self.robot.body.angle += .02 * np.sign(orientation_shift)
else:
self.robot.body.angle = angle(self.robot.body.velocity)
self.robot.previous_angle = self.robot.body.angle
elif velocity_mag < .05: #zero out velocity, may have no effect
self.robot.body.velocity = (0,0)
def _detect_collisions(self):
for wall_shape in self.wall_shapes:
collisions = wall_shape.shapes_collide(self.robot.shape)
if(collisions.points):
img_pos, img_ori = self.pm2pgP(self.robot.body.position), degrees(self.robot.body.angle)
self._apply_image_to_robot(img_pos, img_ori, damage=True)
pg.display.flip()
if not HEADLESS:
time.sleep(.5)
return 1, collisions.points
return 0, None
def _check_wall_overlap(self):
for wall_shape in self.wall_shapes:
collisions = wall_shape.shapes_collide(self.goal_shape)
if(collisions.points):
return True
return False
def raycasting(self, print_sensors=False):
robot_filter = pm.ShapeFilter(mask=pm.ShapeFilter.ALL_MASKS ^ 0b1)
sensor_end_points=[]
for a in self.robot.sensor_angles:
angle = self.robot.body.angle + math.radians(a)
v = vector(angle)
p = v * self.robot.sensor_range + self.robot.body.position
sensor_end_points.append(p)
segment_queries = []
for i, p in enumerate(sensor_end_points):
segment_query = self.space.segment_query_first(self.robot.body.position,p,1,robot_filter)
if segment_query:
segment_queries.append(la.norm(segment_query.point - self.robot.body.position))
else:
segment_queries.append(self.robot.sensor_range)
sq = np.array(segment_queries)
if print_sensors:
print("%d %d %d %d %d"%(int(sq[0]),int(sq[1]),int(sq[2]),int(sq[3]),int(sq[4])))
return sq
def _detect_sensor_collisions(self):
sensors_triggered = []
for wall_shape in self.wall_shapes:
for i, sensor in enumerate(self.robot.sensors):
collisions = wall_shape.shapes_collide(sensor)
if(collisions.points):
sensors_triggered.append(i)
for i in range(len(self.robot.sensors)):
if i in sensors_triggered:
self.robot.sensors[i].color = RED
else:
self.robot.sensors[i].color = BLUE
return sensors_triggered
def _reset_robot(self, center=False, collision_points=None):
previous_angle = vector(self.robot.body.angle)
previous_position = self.robot.body.position
if collision_points:
self.robot.body.angle = angle(collision_points[0].point_a - collision_points[0].point_b)
else:
self.robot.body.angle = angle(-previous_angle)
if center:
self.robot.body.position = self.CENTER
else:
self.robot.body.position = previous_position - (previous_angle * 25)
self.robot.body.angular_velocity = 0
self.robot.body.velocity = (0,0)
def turn_robot_around(self):
previous_angle = vector(self.robot.body.angle)
previous_position = self.robot.body.position
steering_vector = -previous_angle + .01*np.random.randn(2)
turn_len = random.randint(0,1)
if turn_len == 0:
for i in range(180):
self.step(steering_vector, ignore_collisions=True)
else:
for i in range(250):
self.step(steering_vector, ignore_collisions=True)
self.robot.body.angular_velocity = 0
self.robot.body.velocity = (0,0)
def step(self, steering_direction, ignore_collisions=False):
pos, ori = self.robot.body.position, self.robot.body.angle
state = np.array([pos[0], pos[1], ori], dtype=float)
self._apply_robot_motion(steering_direction)
collision = None
if not ignore_collisions:
collision, collision_points = self._detect_collisions()
if collision:
if self.time_since_collision < 10:
self._reset_robot(center=True)
self.time_since_collision = 0
else:
self._reset_robot(collision_points=collision_points)
self.time_since_collision = 0
else:
self.time_since_collision += 1
sensor_readings = self.raycasting(print_sensors=False)
self._detect_sensor_collisions()
self._env_step()
return state, collision, sensor_readings
def _env_step(self):
self.space.step(1/50.0)
self.clock.tick(10000)
self._draw_everything()
def pm2pgP(self, pos):
return Vec2d(pos[0], self.screen_height - pos[1])
def pg2pmP(self, pos):
return Vec2d(pos[0], pos[1] - self.screen_height)
def pm2pgV(self, pos):
return Vec2d(pos[0], -pos[1])
def pg2pmV(self, pos):
pass #TODO if necessary
# return Vec2d(pos[0], pos[1] - self.screen_height)
def oangle(self, vector):
return math.atan2(vector[1], vector[0])
def ovector(self, angle):
return math.cos(angle),math.sin(angle)