|
| 1 | +# LightDock |
| 2 | +## Protein-protein docking framework |
| 3 | +Protein Interactions and Docking Group <http://life.bsc.es/pid/pidweb/> |
| 4 | + |
| 5 | +Life Sciences Department - Barcelona Supercomputing Center <http://www.bsc.es/> |
| 6 | + |
| 7 | +## 1. Introduction |
| 8 | +LightDock is a protein-protein docking framework based on the Glowworm Swarm Optimization (GSO) algorithm. |
| 9 | + |
| 10 | +**The framework is written in the Python programming language (version 2.7) and allows the users to incorporate their own scoring function.** |
| 11 | + |
| 12 | +The LightDock framework is highly versatile, with many options that can be further developed and optimized by the users: it can accept any user-defined scoring function, can use local gradient-free minimization, the simulation can be restrained from the beginning to focus on user-assigned interacting regions, and it has support for the use of pre-calculated conformers for both receptor and ligand. |
| 13 | + |
| 14 | +## 2. Installation |
| 15 | +### 2.1. Dependencies |
| 16 | +LightDock has the following dependencies: |
| 17 | + |
| 18 | +* Python 2.7.x |
| 19 | +* Nose (<http://nose.readthedocs.io/en/latest/>) |
| 20 | +* NumPy (<http://www.numpy.org/>) |
| 21 | +* Scipy (<http://www.scipy.org/>) |
| 22 | +* Cython (<http://cython.org/>) |
| 23 | +* BioPython (<http://biopython.org>) |
| 24 | +* MPI4py (<http://pythonhosted.org/mpi4py/>) |
| 25 | +* ProDy (<http://prody.csb.pitt.edu/>) |
| 26 | +* Freesasa (only if PyDock scoring function is used, <http://freesasa.github.io/>) |
| 27 | + |
| 28 | +NumPy, Scipy, Cython, Biopython, Nose and MPI4py libraries are usually available as packages in most of GNU/Linux distributions. To install them in Ubuntu execute: |
| 29 | + |
| 30 | +`sudo apt-get update && apt-get install python-numpy python-scipy cython python-biopython python-nose2 python-mpi4py` |
| 31 | + |
| 32 | +Make sure all libraries are from Python 2.7.x series. |
| 33 | + |
| 34 | +To install ProDy library, the simplest way is to use pip: |
| 35 | + |
| 36 | +`pip install -U ProDy` |
| 37 | + |
| 38 | +More instructions on how to install it can be found in the official documentation (<http://prody.csb.pitt.edu/downloads/>). |
| 39 | + |
| 40 | +In case of using PyDock scoring function, **Freesasa** library has to be installed and compiled with the python-binding options. |
| 41 | +Please, check the instructions for installing it on its Github (<https://github.com/mittinatten/freesasa>). Tested version in |
| 42 | +LightDock is 1.1 (<https://github.com/mittinatten/freesasa/tree/1.1>). |
| 43 | + |
| 44 | +### 2.2. Compilation of high-intensive calculation source code |
| 45 | +Once the library dependencies are installed, a compilation of some high-intensive calculation parts is required. To do so, a script is provided: |
| 46 | + |
| 47 | +``` |
| 48 | +cd bin/setup |
| 49 | +./setup.sh |
| 50 | +``` |
| 51 | + |
| 52 | +### 2.3. Testing the framework |
| 53 | +LightDock makes use of nosetests library for testing the different parts of the framework. There are two levels of testing: unitary and regression. Before running the tests, please add LightDock folder to your path environment variable. |
| 54 | + |
| 55 | +In bash (**complete the LIGHTDOCK_HOME variable according to the path where you have downloaded and unpacked LightDock**): |
| 56 | + |
| 57 | +``` |
| 58 | +export LIGHTDOCK_HOME=/path/to/lightdock/folder |
| 59 | +export PATH=$PATH:$LIGHTDOCK_HOME/bin:$LIGHTDOCK_HOME/lightdock/bin/post |
| 60 | +export PYTHONPATH=$PYTHONPATH:$LIGHTDOCK_HOME/lightdock/:$LIGHTDOCK_HOME/lightdock/lightdock |
| 61 | +``` |
| 62 | + |
| 63 | +Then you will be able to run the tests. To do so: |
| 64 | + |
| 65 | +Library unit tests: |
| 66 | + |
| 67 | +``` |
| 68 | +./run_tests.sh lib |
| 69 | +``` |
| 70 | + |
| 71 | +Regression short tests: |
| 72 | + |
| 73 | +``` |
| 74 | +./run_tests.sh reg |
| 75 | +``` |
| 76 | + |
| 77 | +Regression long tests (this may take several minutes): |
| 78 | + |
| 79 | +``` |
| 80 | +export LIGHTDOCK_LONG_TEST=true |
| 81 | +./run_tests.sh reg |
| 82 | +``` |
| 83 | + |
| 84 | +## 3. Executing LightDock |
| 85 | +The simplest way to perform a protein-protein docking in LightDock is to use default parameters and to only provide two [PDB](http://www.rcsb.org/pdb/static.do?p=file_formats/pdb/index.html) files for both receptor and ligand proteins. |
| 86 | + |
| 87 | +### 3.1. Simplest example |
| 88 | +You fill find in the [examples](examples/) a folder [2UUY](examples/2UUY/) with a PDB file for the receptor [2UUY_rec.pdb](examples/2UUY/2UUY_rec.pdb) and the ligand [2UUY_lig.pdb](examples/2UUY/2UUY_lig.pdb). |
| 89 | + |
| 90 | +Execute LightDock with the default parameters and only calculating 1 initial glowworm group with 10 glowworms and for 5 steps of the algorithm: |
| 91 | + |
| 92 | +<code> |
| 93 | +lightdock 2UUY_rec.pdb 2UUY_lig.pdb 1 10 5 |
| 94 | +</code> |
| 95 | + |
| 96 | +By default, LightDock makes use of the DFIRE scoring function. The output of the execution should be something similar to this: |
| 97 | + |
| 98 | +``` |
| 99 | +[lightdock] INFO: Parameters are: |
| 100 | +[lightdock] INFO: Receptor: 2UUY_rec.pdb |
| 101 | +[lightdock] INFO: Ligand: 2UUY_lig.pdb |
| 102 | +[lightdock] INFO: Number of clusters: 1 |
| 103 | +[lightdock] INFO: Number of glowworms per cluster: 10 |
| 104 | +[lightdock] INFO: Simulation steps: 5 |
| 105 | +[lightdock] INFO: GSO seed: 324324 |
| 106 | +[lightdock] INFO: Starting points seed: 324324 |
| 107 | +[lightdock] INFO: Translation step: 0.5 |
| 108 | +[lightdock] INFO: Rotation step: 0.5 |
| 109 | +[lightdock] INFO: lightdock parameters saved to ./lightdock.info |
| 110 | +[lightdock] INFO: Reading 2UUY_rec.pdb receptor PDB file... |
| 111 | +[lightdock] INFO: 1628 atoms, 223 residues read. |
| 112 | +[lightdock] INFO: Reading 2UUY_lig.pdb ligand PDB file... |
| 113 | +[lightdock] INFO: 415 atoms, 55 residues read. |
| 114 | +[lightdock] INFO: Saving processed structures to PDB files... |
| 115 | +[lightdock] INFO: Done. |
| 116 | +[lightdock] INFO: Calculating starting positions... |
| 117 | +[lightdock] INFO: Generated 1 positions files |
| 118 | +[lightdock] INFO: Done. |
| 119 | +[lightdock] INFO: Loading scoring function... |
| 120 | +[lightdock] INFO: Using DFIRE scoring function |
| 121 | +[lightdock] INFO: Done. |
| 122 | +[lightdock] INFO: Preparing environment |
| 123 | +[lightdock] INFO: Done. |
| 124 | +[kraken] WARNING: Number of cores has not been specified or is incorrect. Using available cores. |
| 125 | +[kraken] INFO: Kraken has 4 tentacles (cpu cores) |
| 126 | +[kraken] INFO: Tentacle ready with 1 tasks |
| 127 | +[kraken] INFO: Tentacle ready with 0 tasks |
| 128 | +[kraken] INFO: Tentacle ready with 0 tasks |
| 129 | +[kraken] INFO: Tentacle ready with 0 tasks |
| 130 | +[kraken] INFO: 1 ships ready to be smashed |
| 131 | +[lightdock] INFO: Monster spotted |
| 132 | +[kraken] INFO: Release the Kraken! |
| 133 | +[kraken] INFO: folding tentacle Tentacle-2 |
| 134 | +[kraken] INFO: folding tentacle Tentacle-3 |
| 135 | +[0] step 1 |
| 136 | +[kraken] INFO: folding tentacle Tentacle-4 |
| 137 | +[0] step 2 |
| 138 | +[0] step 3 |
| 139 | +[0] step 4 |
| 140 | +[0] step 5 |
| 141 | +[kraken] INFO: folding tentacle Tentacle-1 |
| 142 | +[kraken] INFO: 1 ships destroyed |
| 143 | +[lightdock] INFO: Finished. |
| 144 | +``` |
| 145 | + |
| 146 | +There is a warning on the number of CPU cores used. By default, LightDock will look for the total number of cores. If you want to specify a different number, use the flag <code>-c NUMBER_CORES</code>. |
| 147 | + |
| 148 | +For each of the initial glowworm groups, there is a folder called <code>cluster_X</code>. In our example, we use only one initial glowworm group so there is only a folder <code>cluster_0</code>. Inside, we can find the file containing the result of the simulation: [gso_5.out](examples/2UUY/cluster_0/gso_5.out). |
| 149 | + |
| 150 | +In this file, every line corresponds to a glowworm agent in the algorithm: |
| 151 | + |
| 152 | +``` |
| 153 | +#Coordinates RecID LigID Luciferin Neighbor's number Vision Range Scoring |
| 154 | +(31.4171143, 1.8570079, -6.3956223, -0.1058407, -0.4849369, 0.5997430, -0.6276482) 0 0 10.79432165 0 2.200 7.52191884 |
| 155 | +``` |
| 156 | + |
| 157 | +Finally, to generate the final docked PDB structures, we will use the script **generate_conformations.py**: |
| 158 | + |
| 159 | +``` |
| 160 | +generate_conformations.py 2UUY_rec.pdb 2UUY_lig.pdb cluster_0/gso_5.out 10 |
| 161 | +@> ProDy is configured: verbosity='info' |
| 162 | +[generate_conformations] INFO: Reading lightdock_2UUY_rec.pdb receptor PDB file... |
| 163 | +[generate_conformations] INFO: 1628 atoms, 223 residues read. |
| 164 | +[generate_conformations] INFO: Reading lightdock_2UUY_lig.pdb ligand PDB file... |
| 165 | +[generate_conformations] INFO: 415 atoms, 55 residues read. |
| 166 | +[generate_conformations] INFO: Read 10 coordinate lines |
| 167 | +[generate_conformations] INFO: Generated 10 conformations |
| 168 | +``` |
| 169 | + |
| 170 | +In the <code>cluster_0</code> folder we will find the 10 structures corresponding to the 10 glowworm agents used in the example. |
0 commit comments