-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_sft.py
225 lines (187 loc) · 7.33 KB
/
preprocess_sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import json
import random
from argparse import ArgumentParser
from pathlib import Path
from typing import Union
from urllib.request import urlretrieve
import pandas as pd
from datasets import Dataset, load_dataset
NO_INPUT_PROMPT: str = "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"
def save_sample(
saved_samples: list[dict[str, Union[str, list[dict[str, str]]]]],
output_path: Path,
) -> None:
with output_path.open("w", encoding="utf-8") as f:
for sample in saved_samples:
f.write(json.dumps(sample, ensure_ascii=False) + "\n")
print(f"Saved {int(len(saved_samples))} samples to {output_path}")
def process_default(
dataset: Dataset,
dataset_dir: Path,
dataset_name: str,
message_key: str = "messages",
):
saved_samples: list[dict[str, Union[str, list[dict[str, str]]]]] = []
sample_idx: int = 0
for sample in dataset:
messages = [{"role": "system", "content": NO_INPUT_PROMPT}]
for message in sample[message_key]:
messages.append(message)
saved_samples.append(
{
"ID": f"{dataset_name}-{sample_idx}",
"messages": messages,
}
)
random.seed(42)
random.shuffle(saved_samples)
output_path: Path = dataset_dir / "train" / f"{dataset_name}.jsonl"
save_sample(saved_samples, output_path)
def process_auto_multi_turn_by_calm3(dataset_dir: Path):
raw_filepath: Path = dataset_dir / "AutoMultiTurnByCalm3-22B.jsonl"
if not raw_filepath.exists():
urlretrieve(
"https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B/resolve/main/data/split_20240717_185452_0.jsonl",
str(raw_filepath),
)
with raw_filepath.open(encoding="utf-8") as f:
loaded_samples: list[dict] = [json.loads(line) for line in f]
sample_idx: int = 0
saved_samples: list[dict[str, Union[str, list[dict[str, str]]]]] = []
for loaded_sample in loaded_samples:
messages = [
{"role": "system", "content": NO_INPUT_PROMPT},
{"role": "user", "content": loaded_sample["q1"]},
{"role": "assistant", "content": loaded_sample["a1"]},
]
saved_samples.append(
{
"ID": f"multiturn_calm3-{sample_idx}",
"messages": messages,
}
)
sample_idx += 1
random.seed(42)
random.shuffle(saved_samples)
output_path: Path = dataset_dir / "train" / "multiturn_calm3.jsonl"
save_sample(saved_samples, output_path)
def process_random_to_fixed_multiturn_calm3(dataset_dir: Path):
raw_filepath: Path = dataset_dir / "ramdom-to-fixed-multiturn-Calm3.parquet"
if not raw_filepath.exists():
urlretrieve(
"https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3/resolve/main/data/20240806filtered-00000-of-00001.parquet",
str(raw_filepath),
)
df = pd.read_parquet(str(raw_filepath), engine="pyarrow")
saved_samples: list[dict[str, Union[str, list[dict[str, str]]]]] = []
for index, sample in df.iterrows():
messages = [{"role": "system", "content": NO_INPUT_PROMPT}]
messages.extend(sample["messages"])
saved_samples.append(
{
"ID": f"random_to_fixed_multiturn_calm3-{index}",
"messages": messages,
}
)
random.seed(42)
random.shuffle(saved_samples)
output_path: Path = dataset_dir / "train" / "random_to_fixed_multiturn_calm3.jsonl"
save_sample(saved_samples, output_path)
def process_daring_anteater(dataset_dir: Path):
raw_filepath: Path = dataset_dir / "Daring-Anteater.jsonl"
if not raw_filepath.exists():
urlretrieve(
"https://huggingface.co/datasets/nvidia/Daring-Anteater/resolve/main/train.jsonl",
str(raw_filepath),
)
with raw_filepath.open(encoding="utf-8") as f:
loaded_samples: list[dict] = [json.loads(line) for line in f]
sample_idx: int = 0
saved_samples: list[dict[str, Union[str, list[dict[str, str]]]]] = []
for loaded_sample in loaded_samples:
system_message: str = (
loaded_sample["system"] if loaded_sample["system"] else NO_INPUT_PROMPT
)
messages = [{"role": "system", "content": system_message}]
assert loaded_sample["mask"] == "User"
for utterance in loaded_sample["conversations"]:
if utterance["from"] == "User":
messages.append({"role": "user", "content": utterance["value"]})
elif utterance["from"] == "Assistant":
messages.append({"role": "assistant", "content": utterance["value"]})
else:
raise ValueError(f"Invalid role: {utterance['from']}")
saved_samples.append(
{
"ID": f"daring_anteater_en-{sample_idx}",
"messages": messages,
}
)
sample_idx += 1
random.seed(42)
random.shuffle(saved_samples)
output_path: Path = dataset_dir / "train" / "daring_anteater_en.jsonl"
save_sample(saved_samples, output_path)
def process_answer_carefully(dataset_dir: Path):
dataset = load_dataset(
"llm-jp/AnswerCarefully", data_dir="v2.0", split="validation"
)
saved_samples: list[dict[str, Union[str, list[dict[str, str]]]]] = []
for sample in dataset:
saved_samples.append(
{
"ID": sample["ID"],
"messages": [
{"role": "system", "content": NO_INPUT_PROMPT},
{"role": "user", "content": sample["text"]},
{"role": "assistant", "content": sample["output"]},
],
}
)
random.seed(42)
random.shuffle(saved_samples)
output_path: Path = dataset_dir / "train" / "ac_002.jsonl"
save_sample(saved_samples, output_path)
def main():
parser = ArgumentParser()
parser.add_argument("--dataset-dir", type=str, default="./instruct3_datasets")
args = parser.parse_args()
dataset_dir: Path = Path(args.dataset_dir)
dataset_dir.mkdir(exist_ok=True, parents=True)
# kanhatakeyama/AutoMultiTurnByCalm3-22B
process_auto_multi_turn_by_calm3(dataset_dir)
# kanhatakeyama/ramdom-to-fixed-multiturn-Calm3
process_random_to_fixed_multiturn_calm3(dataset_dir)
# llm-jp/wizardlm8x22b-logical-math-coding-sft-ja
process_default(
load_dataset("llm-jp/wizardlm8x22b-logical-math-coding-sft-ja", split="train"),
dataset_dir,
"logical_math_coding_wizard8x22b",
)
# llm-jp/magpie-sft-v1.0
process_default(
load_dataset(
"llm-jp/magpie-sft-v1.0", split="train", revision="refs/convert/parquet"
),
dataset_dir,
"magpie_sft_v1.0",
message_key="conversations",
)
# nvidia/Daring-Anteater
process_daring_anteater(dataset_dir)
# llm-jp/FLAN
process_default(
load_dataset("llm-jp/FLAN", split="train"),
dataset_dir,
"flan",
)
# llm-jp/Synthetic-JP-EN-Coding-Dataset
process_default(
load_dataset("llm-jp/Synthetic-JP-EN-Coding-Dataset", split="train"),
dataset_dir,
"synthetic_jp_en_coding",
)
# llm-jp/AnswerCarefully
process_answer_carefully(dataset_dir)
if __name__ == "__main__":
main()