-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain_ClassificationDemo.cpp
44 lines (40 loc) · 1.73 KB
/
main_ClassificationDemo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include "libLKYDeepNN/LKYDeepNN.hpp"
#include "libLKYDeepNN/DataSet.hpp"
#include "DrawingAnimation.hpp"
void DrawTraining(LKYDeepNN* _nn, int maxEpochs, int currentEpochs, const vector<vector<double>>& displayData)
{
string strPngName = "classification_Spiral_demo_PNGs/訓練途中" + to_string(currentEpochs) + ".png";
string strPutText = "Epoch:"+to_string(currentEpochs)+"/"+to_string(maxEpochs)+" Err:" + to_string(_nn->GetTrainLoss().back());
//PNG maker
if(0 == currentEpochs % 10)
{
cv::Mat shot = Draw2DClassificationData("訓練途中", displayData, _nn, strPutText);
//cv::imwrite(strPngName.c_str(), shot);
}
}
int main()
{
// vector<vector<double>> trainData = Make2DBinaryTrainingData();//
double bias = 0;
//vector<vector<double>> trainData = classifyCircleData(bias ,bias);//
vector<vector<double>> trainData = classifySpiralData(bias ,bias);
//int numHiddenNodesInEachLayer = 8;
//int numHiddenLayers = 3;
//LKYDeepNN nn(2, vector<int>(numHiddenLayers, numHiddenNodesInEachLayer), 2);
LKYDeepNN nn(trainData.front().size()-2, vector<int>{8,8,8}, 2);
nn.SetActivation(new SeLU(), new Softmax());
//nn.SetActivation(new LReLU(), new Linear());
nn.SetLossFunction(new CrossEntropy());
//nn.SetLossFunction(new Square());
//nn.SetLossFunction(new Hinge());
cout << nn.ToString() << endl;
nn.eventInTraining = DrawTraining;//將包有視覺化的事件傳入
cout << "訓練開始" <<endl;
double learningRate = 0.025/3;
int epochs = 3500;
printf("learningRate=%lf\n",learningRate);
nn.Training(learningRate, epochs, trainData);
cout << nn.WeightsToString()<<endl;
cout << "訓練完成" <<endl;
fgetc(stdin);
}