描述
将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。
实例
1、
输入:l1 = [1,2,4], l2 = [1,3,4]
输出:[1,1,2,3,4,4]
2、
输入:l1 = [], l2 = []
输出:[]
3、
输入:l1 = [], l2 = [0]
输出:[0]
提示:
- 两个链表的节点数目范围是 [0, 50]
- -100 <= Node.val <= 100
- l1 和 l2 均按 非递减顺序 排列
思路
1、判断当前节点的值的大小
2、进行解链递归判断
实现
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* @param {ListNode} l1
* @param {ListNode} l2
* @return {ListNode}
*/
var mergeTwoLists = function (l1, l2) {
if (!l1) return l2;
if (!l2) return l1;
if (l1.val < l2.val) {
l1.next = mergeTwoLists(l1.next, l2);
return l1;
} else {
l2.next = mergeTwoLists(l1, l2.next);
return l2;
}
};
实现-复杂度分析
时间复杂度
:O(n+m),因为是递归,递归的次数取决于 l1 与 l2 链表长度,n 代表 l1 的链表长度,m 代表 l2 的链表长度
空间复杂度
:O(n+m),n 代表 l1 的链表长度,m 代表 l2 的链表长度
官方
// 递归解法
var mergeTwoLists = function (l1, l2) {
if (l1 === null) {
return l2;
} else if (l2 === null) {
return l1;
} else if (l1.val < l2.val) {
l1.next = mergeTwoLists(l1.next, l2);
return l1;
} else {
l2.next = mergeTwoLists(l1, l2.next);
return l2;
}
};
// 迭代解法
var mergeTwoLists = function (l1, l2) {
const prehead = new ListNode(-1);
let prev = prehead;
while (l1 != null && l2 != null) {
if (l1.val <= l2.val) {
prev.next = l1;
l1 = l1.next;
} else {
prev.next = l2;
l2 = l2.next;
}
prev = prev.next;
}
// 合并后 l1 和 l2 最多只有一个还未被合并完,我们直接将链表末尾指向未合并完的链表即可
prev.next = l1 === null ? l2 : l1;
return prehead.next;
};
官方-复杂度分析
递归
时间复杂度
:O(n+m),其中 n 和 m 分别为两个链表的长度。因为每次调用递归都会去掉 l1 或者 l2 的头节点(直到至少有一个链表为空),函数 mergeTwoList 至多只会递归调用每个节点一次。因此,时间复杂度取决于合并后的链表长度,即 O(n+m)。
空间复杂度
:O(n+m),其中 n 和 m 分别为两个链表的长度。递归调用 mergeTwoLists 函数时需要消耗栈空间,栈空间的大小取决于递归调用的深度。结束递归调用时 mergeTwoLists 函数最多调用 n+m 次,因此空间复杂度为 O(n+m)。
迭代
时间复杂度
:O(n+m),其中 n 和 m 分别为两个链表的长度。因为每/次循环迭代中,l1 和 l2 只有一个元素会被放进合并链表中, 因此 while 循环的次数不会超过两个链表的长度之和。所有其他操作的时间复杂度都是常数级别的,因此总的时间复杂度为 O(n+m)。
空间复杂度
:O(1)。我们只需要常数的空间存放若干变量。