描述
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
实例
1、
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
2、
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]
提示:
- 1 <= nums.length <= 104
- -104 <= nums[i] <= 104
- nums 已按 非递减顺序 排序
思路
1、使用左右双指针
2、先取左右指针绝对值,在进行比较
将小的unshift到新数组中
实现
/**
* @param {number[]} nums
* @return {number[]}
*/
var sortedSquares = function (nums) {
let left = 0;
let right = nums.length - 1;
let ret = [];
while (left <= right) {
const absLeft = Math.abs(nums[left]);
const absRight = Math.abs(nums[right]);
if (absLeft > absRight) {
ret.unshift(absLeft * absLeft);
left++;
} else {
ret.unshift(absRight * absRight);
right--;
}
}
return ret;
};
实现-复杂度分析
时间复杂度
:O(n),n 代表数组的长度,因为我们需要遍历完整的数组
空间复杂度
:O(1),除了只使用了返回的答案数组 ret,剩余的辅助空间变量均为常数,故渐进空间复杂度为 O(1)
官方
// java
class Solution {
public int[] sortedSquares(int[] nums) {
int n = nums.length;
int negative = -1;
for (int i = 0; i < n; ++i) {
if (nums[i] < 0) {
negative = i;
} else {
break;
}
}
int[] ans = new int[n];
int index = 0, i = negative, j = negative + 1;
while (i >= 0 || j < n) {
if (i < 0) {
ans[index] = nums[j] * nums[j];
++j;
} else if (j == n) {
ans[index] = nums[i] * nums[i];
--i;
} else if (nums[i] * nums[i] < nums[j] * nums[j]) {
ans[index] = nums[i] * nums[i];
--i;
} else {
ans[index] = nums[j] * nums[j];
++j;
}
++index;
}
return ans;
}
}
官方-复杂度分析
时间复杂度
:O(n),其中 n 是数组 nnums 的长度。
空间复杂度
:O(1)。除了存储答案的数组以外,我们只需要维护常量空间。