-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathquery_optc.scala
324 lines (277 loc) · 9.74 KB
/
query_optc.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/**
Query Compiler III (C Code)
===========================
Outline:
<div id="tableofcontents"></div>
*/
package scala.lms.tutorial
import scala.lms.common._
object query_optc {
trait QueryCompiler extends Dsl with StagedQueryProcessor
with ScannerLowerBase {
override def version = "query_optc"
/**
Input File Tokenizer
--------------------
*/
class Scanner(name: Rep[String]) {
val fd = open(name)
val fl = filelen(fd)
val data = mmap[Char](fd,fl)
var pos = 0
def next(d: Rep[Char]) = {
val start = pos: Rep[Int] // force read
while (data(pos) != d) pos += 1
val len = pos - start
pos += 1
RString(stringFromCharArray(data,start,len), len)
}
def nextInt(d: Rep[Char]) = {
val start = pos: Rep[Int] // force read
var num = 0
while (data(pos) != d) {
num = num * 10 + (data(pos) - '0').toInt
pos += 1
}
pos += 1
RInt(num)
}
def hasNext = pos < fl
def done = close(fd)
}
/**
Low-Level Processing Logic
--------------------------
*/
abstract class RField {
def print()
def compare(o: RField): Rep[Boolean]
def hash: Rep[Long]
}
case class RString(data: Rep[String], len: Rep[Int]) extends RField {
def print() = prints(data)
def compare(o: RField) = o match { case RString(data2, len2) => if (len != len2) false else {
// TODO: we may or may not want to inline this (code bloat and icache considerations).
var i = 0
while (i < len && data.charAt(i) == data2.charAt(i)) {
i += 1
}
i == len
}}
def hash = data.HashCode(len)
}
case class RInt(value: Rep[Int]) extends RField {
def print() = printf("%d",value)
def compare(o: RField) = o match { case RInt(v2) => value == v2 }
def hash = value.asInstanceOf[Rep[Long]]
}
type Fields = Vector[RField]
def isNumericCol(s: String) = s.startsWith("#")
case class Record(fields: Fields, schema: Schema) {
def apply(key: String): RField = fields(schema indexOf key)
def apply(keys: Schema): Fields = keys.map(this apply _)
}
def processCSV(filename: Rep[String], schema: Schema, fieldDelimiter: Char, externalSchema: Boolean)(yld: Record => Rep[Unit]): Rep[Unit] = {
val s = new Scanner(filename)
val last = schema.last
def nextField(name: String) = {
val d = if (name==last) '\n' else fieldDelimiter
if (isNumericCol(name)) s.nextInt(d) else s.next(d)
}
def nextRecord = Record(schema.map(nextField), schema)
if (!externalSchema) {
// the right thing would be to dynamically re-check the schema,
// but it clutters the generated code
// schema.foreach(f => if (s.next != f) println("ERROR: schema mismatch"))
nextRecord // ignore csv header
}
while (s.hasNext) yld(nextRecord)
s.done
}
def printSchema(schema: Schema) = println(schema.mkString(defaultFieldDelimiter.toString))
def printFields(fields: Fields) = {
if (fields.nonEmpty) {
fields.head.print
fields.tail.foreach { x => printf(defaultFieldDelimiter.toString); x.print }
}
println("")
}
def fieldsEqual(a: Fields, b: Fields) = (a zip b).foldLeft(unit(true)) { (a,b) => b._1 compare b._2 }
def fieldsHash(a: Fields) = a.foldLeft(unit(0L)) { _ * 41L + _.hash }
/**
Query Interpretation = Compilation
----------------------------------
*/
def evalPred(p: Predicate)(rec: Record): Rep[Boolean] = p match {
case Eq(a1, a2) => evalRef(a1)(rec) compare evalRef(a2)(rec)
}
def evalRef(r: Ref)(rec: Record): RField = r match {
case Field(name) => rec(name)
case Value(x:Int) => RInt(x)
case Value(x) => RString(x.toString,x.toString.length)
}
def resultSchema(o: Operator): Schema = o match {
case Scan(_, schema, _, _) => schema
case Filter(pred, parent) => resultSchema(parent)
case Project(schema, _, _) => schema
case Join(left, right) => resultSchema(left) ++ resultSchema(right)
case Group(keys, agg, parent)=> keys ++ agg
case HashJoin(left, right) => resultSchema(left) ++ resultSchema(right)
case PrintCSV(parent) => Schema()
}
def execOp(o: Operator)(yld: Record => Rep[Unit]): Rep[Unit] = o match {
case Scan(filename, schema, fieldDelimiter, externalSchema) =>
processCSV(filename, schema, fieldDelimiter, externalSchema)(yld)
case Filter(pred, parent) =>
execOp(parent) { rec => if (evalPred(pred)(rec)) yld(rec) }
case Project(newSchema, parentSchema, parent) =>
execOp(parent) { rec => yld(Record(rec(parentSchema), newSchema)) }
case Join(left, right) =>
execOp(left) { rec1 =>
execOp(right) { rec2 =>
val keys = rec1.schema intersect rec2.schema
if (fieldsEqual(rec1(keys), rec2(keys)))
yld(Record(rec1.fields ++ rec2.fields, rec1.schema ++ rec2.schema))
}
}
case Group(keys, agg, parent) =>
val hm = new HashMapAgg(keys, agg)
execOp(parent) { rec =>
hm(rec(keys)) += rec(agg)
}
hm foreach { (k,a) =>
yld(Record(k ++ a, keys ++ agg))
}
case HashJoin(left, right) =>
val keys = resultSchema(left) intersect resultSchema(right)
val hm = new HashMapBuffer(keys, resultSchema(left))
execOp(left) { rec1 =>
hm(rec1(keys)) += rec1.fields
}
execOp(right) { rec2 =>
hm(rec2(keys)) foreach { rec1 =>
yld(Record(rec1.fields ++ rec2.fields, rec1.schema ++ rec2.schema))
}
}
case PrintCSV(parent) =>
val schema = resultSchema(parent)
printSchema(schema)
execOp(parent) { rec => printFields(rec.fields) }
}
def execQuery(q: Operator): Unit = execOp(q) { _ => }
/**
Data Structure Implementations
------------------------------
*/
// defaults for hash sizes etc
object hashDefaults {
val hashSize = (1 << 8)
val keysSize = hashSize
val bucketSize = (1 << 8)
val dataSize = keysSize * bucketSize
}
// common base class to factor out commonalities of group and join hash tables
class HashMapBase(keySchema: Schema, schema: Schema) {
import hashDefaults._
val keys = new ArrayBuffer(keysSize, keySchema)
val keyCount = var_new(0)
val hashMask = hashSize - 1
val htable = NewArray[Int](hashSize)
for (i <- 0 until hashSize) { htable(i) = -1 }
def lookup(k: Fields) = lookupInternal(k,None)
def lookupOrUpdate(k: Fields)(init: Rep[Int]=>Rep[Unit]) = lookupInternal(k,Some(init))
def lookupInternal(k: Fields, init: Option[Rep[Int]=>Rep[Unit]]): Rep[Int] =
comment[Int]("hash_lookup") {
val h = fieldsHash(k).toInt
var pos = h & hashMask
while (htable(pos) != -1 && !fieldsEqual(keys(htable(pos)),k)) {
pos = (pos + 1) & hashMask
}
if (init.isDefined) {
if (htable(pos) == -1) {
val keyPos = keyCount: Rep[Int] // force read
keys(keyPos) = k
keyCount += 1
htable(pos) = keyPos
init.get(keyPos)
keyPos
} else {
htable(pos)
}
} else {
htable(pos)
}
}
}
// hash table for groupBy, storing sums
class HashMapAgg(keySchema: Schema, schema: Schema) extends HashMapBase(keySchema: Schema, schema: Schema) {
import hashDefaults._
val values = new ArrayBuffer(keysSize, schema) // assuming all summation fields are numeric
def apply(k: Fields) = new {
def +=(v: Fields) = {
val keyPos = lookupOrUpdate(k) { keyPos =>
values(keyPos) = schema.map(_ => RInt(0))
}
values(keyPos) = (values(keyPos) zip v) map { case (RInt(x), RInt(y)) => RInt(x + y) }
}
}
def foreach(f: (Fields,Fields) => Rep[Unit]): Rep[Unit] = {
for (i <- 0 until keyCount) {
f(keys(i),values(i))
}
}
}
// hash table for joins, storing lists of records
class HashMapBuffer(keySchema: Schema, schema: Schema) extends HashMapBase(keySchema: Schema, schema: Schema) {
import hashDefaults._
val data = new ArrayBuffer(dataSize, schema)
val dataCount = var_new(0)
val buckets = NewArray[Int](dataSize)
val bucketCounts = NewArray[Int](keysSize)
def apply(k: Fields) = new {
def +=(v: Fields) = {
val dataPos = dataCount: Rep[Int] // force read
data(dataPos) = v
dataCount += 1
val bucket = lookupOrUpdate(k)(bucket => bucketCounts(bucket) = 0)
val bucketPos = bucketCounts(bucket)
buckets(bucket * bucketSize + bucketPos) = dataPos
bucketCounts(bucket) = bucketPos + 1
}
def foreach(f: Record => Rep[Unit]): Rep[Unit] = {
val bucket = lookup(k)
if (bucket != -1) {
val bucketLen = bucketCounts(bucket)
val bucketStart = bucket * bucketSize
for (i <- bucketStart until (bucketStart + bucketLen)) {
f(Record(data(buckets(i)),schema))
}
}
}
}
}
// column-oriented array buffer, with a row-oriented interface,
// specialized to data representation
abstract class ColBuffer
case class IntColBuffer(data: Rep[Array[Int]]) extends ColBuffer
case class StringColBuffer(data: Rep[Array[String]], len: Rep[Array[Int]]) extends ColBuffer
class ArrayBuffer(dataSize: Int, schema: Schema) {
val buf = schema.map {
case hd if isNumericCol(hd) => IntColBuffer(NewArray[Int](dataSize))
case _ => StringColBuffer(NewArray[String](dataSize), NewArray[Int](dataSize))
}
var len = 0
def +=(x: Fields) = {
this(len) = x
len += 1
}
def update(i: Rep[Int], x: Fields) = (buf,x).zipped.foreach {
case (IntColBuffer(b), RInt(x)) => b(i) = x
case (StringColBuffer(b,l), RString(x,y)) => b(i) = x; l(i) = y
}
def apply(i: Rep[Int]) = buf.map {
case IntColBuffer(b) => RInt(b(i))
case StringColBuffer(b,l) => RString(b(i),l(i))
}
}
}}