-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathbase.py
executable file
·767 lines (612 loc) · 27.1 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
"""Base class and original SMOTE methods for over-sampling"""
# Authors: Guillaume Lemaitre <[email protected]>
# Fernando Nogueira
# Christos Aridas
# Dzianis Dudnik
# License: MIT
import math
from collections import Counter
import numpy as np
from scipy import sparse
from scipy import stats
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
from sklearn.utils import check_random_state
from sklearn.utils import _safe_indexing
from sklearn.utils import check_array
from sklearn.utils.sparsefuncs_fast import csr_mean_variance_axis0
from sklearn.utils.sparsefuncs_fast import csc_mean_variance_axis0
from ..base import BaseOverSampler
from ...metrics.pairwise import ValueDifferenceMetric
from ...utils import check_neighbors_object
from ...utils import check_target_type
from ...utils import Substitution
from ...utils._docstring import _n_jobs_docstring
from ...utils._docstring import _random_state_docstring
from ...utils._validation import _deprecate_positional_args
class BaseSMOTE(BaseOverSampler):
"""Base class for the different SMOTE algorithms."""
def __init__(
self,
sampling_strategy="auto",
random_state=None,
k_neighbors=5,
n_jobs=None,
):
super().__init__(sampling_strategy=sampling_strategy)
self.random_state = random_state
self.k_neighbors = k_neighbors
self.n_jobs = n_jobs
def _validate_estimator(self):
"""Check the NN estimators shared across the different SMOTE
algorithms.
"""
self.nn_k_ = check_neighbors_object(
"k_neighbors", self.k_neighbors, additional_neighbor=1
)
def _make_samples(
self, X, y_dtype, y_type, nn_data, nn_num, n_samples, step_size=1.0
):
"""A support function that returns artificial samples constructed along
the line connecting nearest neighbours.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Points from which the points will be created.
y_dtype : dtype
The data type of the targets.
y_type : str or int
The minority target value, just so the function can return the
target values for the synthetic variables with correct length in
a clear format.
nn_data : ndarray of shape (n_samples_all, n_features)
Data set carrying all the neighbours to be used
nn_num : ndarray of shape (n_samples_all, k_nearest_neighbours)
The nearest neighbours of each sample in `nn_data`.
n_samples : int
The number of samples to generate.
step_size : float, default=1.0
The step size to create samples.
Returns
-------
X_new : {ndarray, sparse matrix} of shape (n_samples_new, n_features)
Synthetically generated samples.
y_new : ndarray of shape (n_samples_new,)
Target values for synthetic samples.
"""
random_state = check_random_state(self.random_state)
samples_indices = random_state.randint(low=0, high=nn_num.size, size=n_samples)
# np.newaxis for backwards compatability with random_state
steps = step_size * random_state.uniform(size=n_samples)[:, np.newaxis]
rows = np.floor_divide(samples_indices, nn_num.shape[1])
cols = np.mod(samples_indices, nn_num.shape[1])
X_new = self._generate_samples(X, nn_data, nn_num, rows, cols, steps)
y_new = np.full(n_samples, fill_value=y_type, dtype=y_dtype)
return X_new, y_new, rows, cols
def _generate_samples(self, X, nn_data, nn_num, rows, cols, steps):
r"""Generate a synthetic sample.
The rule for the generation is:
.. math::
\mathbf{s_{s}} = \mathbf{s_{i}} + \mathcal{u}(0, 1) \times
(\mathbf{s_{i}} - \mathbf{s_{nn}}) \,
where \mathbf{s_{s}} is the new synthetic samples, \mathbf{s_{i}} is
the current sample, \mathbf{s_{nn}} is a randomly selected neighbors of
\mathbf{s_{i}} and \mathcal{u}(0, 1) is a random number between [0, 1).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Points from which the points will be created.
nn_data : ndarray of shape (n_samples_all, n_features)
Data set carrying all the neighbours to be used.
nn_num : ndarray of shape (n_samples_all, k_nearest_neighbours)
The nearest neighbours of each sample in `nn_data`.
rows : ndarray of shape (n_samples,), dtype=int
Indices pointing at feature vector in X which will be used
as a base for creating new samples.
cols : ndarray of shape (n_samples,), dtype=int
Indices pointing at which nearest neighbor of base feature vector
will be used when creating new samples.
steps : ndarray of shape (n_samples,), dtype=float
Step sizes for new samples.
Returns
-------
X_new : {ndarray, sparse matrix} of shape (n_samples, n_features)
Synthetically generated samples.
"""
diffs = nn_data[nn_num[rows, cols]] - X[rows]
if sparse.issparse(X):
sparse_func = type(X).__name__
steps = getattr(sparse, sparse_func)(steps)
X_new = X[rows] + steps.multiply(diffs)
else:
X_new = X[rows] + steps * diffs
return X_new.astype(X.dtype)
def _in_danger_noise(self, nn_estimator, samples, target_class, y, kind="danger"):
"""Estimate if a set of sample are in danger or noise.
Used by BorderlineSMOTE and SVMSMOTE.
Parameters
----------
nn_estimator : estimator object
An estimator that inherits from
:class:`~sklearn.neighbors.base.KNeighborsMixin` use to determine
if a sample is in danger/noise.
samples : {array-like, sparse matrix} of shape (n_samples, n_features)
The samples to check if either they are in danger or not.
target_class : int or str
The target corresponding class being over-sampled.
y : array-like of shape (n_samples,)
The true label in order to check the neighbour labels.
kind : {'danger', 'noise'}, default='danger'
The type of classification to use. Can be either:
- If 'danger', check if samples are in danger,
- If 'noise', check if samples are noise.
Returns
-------
output : ndarray of shape (n_samples,)
A boolean array where True refer to samples in danger or noise.
"""
x = nn_estimator.kneighbors(samples, return_distance=False)[:, 1:]
nn_label = (y[x] != target_class).astype(int)
n_maj = np.sum(nn_label, axis=1)
if kind == "danger":
# Samples are in danger for m/2 <= m' < m
return np.bitwise_and(
n_maj >= (nn_estimator.n_neighbors - 1) / 2,
n_maj < nn_estimator.n_neighbors - 1,
)
elif kind == "noise":
# Samples are noise for m = m'
return n_maj == nn_estimator.n_neighbors - 1
else:
raise NotImplementedError
@Substitution(
sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
n_jobs=_n_jobs_docstring,
random_state=_random_state_docstring,
)
class SMOTE(BaseSMOTE):
"""Class to perform over-sampling using SMOTE.
This object is an implementation of SMOTE - Synthetic Minority
Over-sampling Technique as presented in [1]_.
Read more in the :ref:`User Guide <smote_adasyn>`.
Parameters
----------
{sampling_strategy}
{random_state}
k_neighbors : int or object, default=5
If ``int``, number of nearest neighbours to used to construct synthetic
samples. If object, an estimator that inherits from
:class:`~sklearn.neighbors.base.KNeighborsMixin` that will be used to
find the k_neighbors.
{n_jobs}
See Also
--------
SMOTENC : Over-sample using SMOTE for continuous and categorical features.
SMOTEN : Over-sample using the SMOTE variant specifically for categorical
features only.
BorderlineSMOTE : Over-sample using the borderline-SMOTE variant.
SVMSMOTE : Over-sample using the SVM-SMOTE variant.
ADASYN : Over-sample using ADASYN.
KMeansSMOTE : Over-sample applying a clustering before to oversample using
SMOTE.
Notes
-----
See the original papers: [1]_ for more details.
Supports multi-class resampling. A one-vs.-rest scheme is used as
originally proposed in [1]_.
References
----------
.. [1] N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, "SMOTE:
synthetic minority over-sampling technique," Journal of artificial
intelligence research, 321-357, 2002.
Examples
--------
>>> from collections import Counter
>>> from sklearn.datasets import make_classification
>>> from imblearn.over_sampling import \
SMOTE # doctest: +NORMALIZE_WHITESPACE
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
>>> print('Original dataset shape %s' % Counter(y))
Original dataset shape Counter({{1: 900, 0: 100}})
>>> sm = SMOTE(random_state=42)
>>> X_res, y_res = sm.fit_resample(X, y)
>>> print('Resampled dataset shape %s' % Counter(y_res))
Resampled dataset shape Counter({{0: 900, 1: 900}})
"""
@_deprecate_positional_args
def __init__(
self,
*,
sampling_strategy="auto",
random_state=None,
k_neighbors=5,
n_jobs=None,
):
super().__init__(
sampling_strategy=sampling_strategy,
random_state=random_state,
k_neighbors=k_neighbors,
n_jobs=n_jobs,
)
def _fit_resample(self, X, y):
self._validate_estimator()
X_resampled = [X.copy()]
y_resampled = [y.copy()]
self.real_indices = [i for i in range(len(y))]
self.which_neighbors = [0]*len(y)
for class_sample, n_samples in self.sampling_strategy_.items():
if n_samples == 0:
continue
target_class_indices = np.flatnonzero(y == class_sample)
X_class = _safe_indexing(X, target_class_indices)
self.nn_k_.fit(X_class)
nns = self.nn_k_.kneighbors(X_class, return_distance=False)[:, 1:]
X_new, y_new, rows, cols = self._make_samples(
X_class, y.dtype, class_sample, X_class, nns, n_samples, 1.0
)
X_resampled.append(X_new)
y_resampled.append(y_new)
self.real_indices.append(target_class_indices[rows])
self.which_neighbors.append(cols)
if sparse.issparse(X):
X_resampled = sparse.vstack(X_resampled, format=X.format)
else:
X_resampled = np.vstack(X_resampled)
y_resampled = np.hstack(y_resampled)
self.real_indices = np.hstack(self.real_indices)
self.which_neighbors = np.hstack(self.which_neighbors)
return X_resampled, y_resampled
def sample_indices(self, get_which_neighbors=False):
"""return indices
- for real sample, return its own index
- for synthetic sample, return the index of its "mother" real sample
Parameters
-----------
get_which_neighbors: if ==True returns which nearest neighbor is used
For samples that are not generated, returns 0
"""
if get_which_neighbors is True:
return [(i, j) for i, j in zip(self.real_indices, self.which_neighbors)]
else:
return self.real_indices
@Substitution(
sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
n_jobs=_n_jobs_docstring,
random_state=_random_state_docstring,
)
class SMOTENC(SMOTE):
"""Synthetic Minority Over-sampling Technique for Nominal and Continuous.
Unlike :class:`SMOTE`, SMOTE-NC for dataset containing numerical and
categorical features. However, it is not designed to work with only
categorical features.
Read more in the :ref:`User Guide <smote_adasyn>`.
.. versionadded:: 0.4
Parameters
----------
categorical_features : ndarray of shape (n_cat_features,) or (n_features,)
Specified which features are categorical. Can either be:
- array of indices specifying the categorical features;
- mask array of shape (n_features, ) and ``bool`` dtype for which
``True`` indicates the categorical features.
{sampling_strategy}
{random_state}
k_neighbors : int or object, default=5
If ``int``, number of nearest neighbours to used to construct synthetic
samples. If object, an estimator that inherits from
:class:`~sklearn.neighbors.base.KNeighborsMixin` that will be used to
find the k_neighbors.
{n_jobs}
See Also
--------
SMOTE : Over-sample using SMOTE.
SMOTEN : Over-sample using the SMOTE variant specifically for categorical
features only.
SVMSMOTE : Over-sample using SVM-SMOTE variant.
BorderlineSMOTE : Over-sample using Borderline-SMOTE variant.
ADASYN : Over-sample using ADASYN.
KMeansSMOTE : Over-sample applying a clustering before to oversample using
SMOTE.
Notes
-----
See the original paper [1]_ for more details.
Supports mutli-class resampling. A one-vs.-rest scheme is used as
originally proposed in [1]_.
See
:ref:`sphx_glr_auto_examples_over-sampling_plot_comparison_over_sampling.py`,
and :ref:`sphx_glr_auto_examples_over-sampling_plot_illustration_generation_sample.py`. # noqa
References
----------
.. [1] N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, "SMOTE:
synthetic minority over-sampling technique," Journal of artificial
intelligence research, 321-357, 2002.
Examples
--------
>>> from collections import Counter
>>> from numpy.random import RandomState
>>> from sklearn.datasets import make_classification
>>> from imblearn.over_sampling import SMOTENC
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
>>> print(f'Original dataset shape {{X.shape}}')
Original dataset shape (1000, 20)
>>> print(f'Original dataset samples per class {{Counter(y)}}')
Original dataset samples per class Counter({{1: 900, 0: 100}})
>>> # simulate the 2 last columns to be categorical features
>>> X[:, -2:] = RandomState(10).randint(0, 4, size=(1000, 2))
>>> sm = SMOTENC(random_state=42, categorical_features=[18, 19])
>>> X_res, y_res = sm.fit_resample(X, y)
>>> print(f'Resampled dataset samples per class {{Counter(y_res)}}')
Resampled dataset samples per class Counter({{0: 900, 1: 900}})
"""
_required_parameters = ["categorical_features"]
@_deprecate_positional_args
def __init__(
self,
categorical_features,
*,
sampling_strategy="auto",
random_state=None,
k_neighbors=5,
n_jobs=None,
):
super().__init__(
sampling_strategy=sampling_strategy,
random_state=random_state,
k_neighbors=k_neighbors,
)
self.categorical_features = categorical_features
def _check_X_y(self, X, y):
"""Overwrite the checking to let pass some string for categorical
features.
"""
y, binarize_y = check_target_type(y, indicate_one_vs_all=True)
X, y = self._validate_data(
X, y, reset=True, dtype=None, accept_sparse=["csr", "csc"]
)
return X, y, binarize_y
def _validate_estimator(self):
super()._validate_estimator()
categorical_features = np.asarray(self.categorical_features)
if categorical_features.dtype.name == "bool":
self.categorical_features_ = np.flatnonzero(categorical_features)
else:
if any(
[cat not in np.arange(self.n_features_) for cat in categorical_features]
):
raise ValueError(
f"Some of the categorical indices are out of range. Indices"
f" should be between 0 and {self.n_features_}"
)
self.categorical_features_ = categorical_features
self.continuous_features_ = np.setdiff1d(
np.arange(self.n_features_), self.categorical_features_
)
if self.categorical_features_.size == self.n_features_in_:
raise ValueError(
"SMOTE-NC is not designed to work only with categorical "
"features. It requires some numerical features."
)
def _fit_resample(self, X, y):
self.n_features_ = X.shape[1]
self._validate_estimator()
# compute the median of the standard deviation of the minority class
target_stats = Counter(y)
class_minority = min(target_stats, key=target_stats.get)
X_continuous = X[:, self.continuous_features_]
X_continuous = check_array(X_continuous, accept_sparse=["csr", "csc"])
X_minority = _safe_indexing(X_continuous, np.flatnonzero(y == class_minority))
if sparse.issparse(X):
if X.format == "csr":
_, var = csr_mean_variance_axis0(X_minority)
else:
_, var = csc_mean_variance_axis0(X_minority)
else:
var = X_minority.var(axis=0)
self.median_std_ = np.median(np.sqrt(var))
X_categorical = X[:, self.categorical_features_]
if X_continuous.dtype.name != "object":
dtype_ohe = X_continuous.dtype
else:
dtype_ohe = np.float64
self.ohe_ = OneHotEncoder(sparse=True, handle_unknown="ignore", dtype=dtype_ohe)
# the input of the OneHotEncoder needs to be dense
X_ohe = self.ohe_.fit_transform(
X_categorical.toarray() if sparse.issparse(X_categorical) else X_categorical
)
# we can replace the 1 entries of the categorical features with the
# median of the standard deviation. It will ensure that whenever
# distance is computed between 2 samples, the difference will be equal
# to the median of the standard deviation as in the original paper.
# In the edge case where the median of the std is equal to 0, the 1s
# entries will be also nullified. In this case, we store the original
# categorical encoding which will be later used for inversing the OHE
if math.isclose(self.median_std_, 0):
self._X_categorical_minority_encoded = _safe_indexing(
X_ohe.toarray(), np.flatnonzero(y == class_minority)
)
X_ohe.data = np.ones_like(X_ohe.data, dtype=X_ohe.dtype) * self.median_std_ / 2
X_encoded = sparse.hstack((X_continuous, X_ohe), format="csr")
X_resampled, y_resampled = super()._fit_resample(X_encoded, y)
# reverse the encoding of the categorical features
X_res_cat = X_resampled[:, self.continuous_features_.size:]
X_res_cat.data = np.ones_like(X_res_cat.data)
X_res_cat_dec = self.ohe_.inverse_transform(X_res_cat)
if sparse.issparse(X):
X_resampled = sparse.hstack(
(
X_resampled[:, : self.continuous_features_.size],
X_res_cat_dec,
),
format="csr",
)
else:
X_resampled = np.hstack(
(
X_resampled[:, : self.continuous_features_.size].toarray(),
X_res_cat_dec,
)
)
indices_reordered = np.argsort(
np.hstack((self.continuous_features_, self.categorical_features_))
)
if sparse.issparse(X_resampled):
# the matrix is supposed to be in the CSR format after the stacking
col_indices = X_resampled.indices.copy()
for idx, col_idx in enumerate(indices_reordered):
mask = X_resampled.indices == col_idx
col_indices[mask] = idx
X_resampled.indices = col_indices
else:
X_resampled = X_resampled[:, indices_reordered]
return X_resampled, y_resampled
def _generate_samples(self, X, nn_data, nn_num, rows, cols, steps):
"""Generate a synthetic sample with an additional steps for the
categorical features.
Each new sample is generated the same way than in SMOTE. However, the
categorical features are mapped to the most frequent nearest neighbors
of the majority class.
"""
rng = check_random_state(self.random_state)
X_new = super()._generate_samples(X, nn_data, nn_num, rows, cols, steps)
# change in sparsity structure more efficient with LIL than CSR
X_new = X_new.tolil() if sparse.issparse(X_new) else X_new
# convert to dense array since scipy.sparse doesn't handle 3D
nn_data = nn_data.toarray() if sparse.issparse(nn_data) else nn_data
# In the case that the median std was equal to zeros, we have to
# create non-null entry based on the encoded of OHE
if math.isclose(self.median_std_, 0):
nn_data[
:, self.continuous_features_.size:
] = self._X_categorical_minority_encoded
all_neighbors = nn_data[nn_num[rows]]
categories_size = [self.continuous_features_.size] + [
cat.size for cat in self.ohe_.categories_
]
for start_idx, end_idx in zip(
np.cumsum(categories_size)[:-1], np.cumsum(categories_size)[1:]
):
col_maxs = all_neighbors[:, :, start_idx:end_idx].sum(axis=1)
# tie breaking argmax
is_max = np.isclose(col_maxs, col_maxs.max(axis=1, keepdims=True))
max_idxs = rng.permutation(np.argwhere(is_max))
xs, idx_sels = np.unique(max_idxs[:, 0], return_index=True)
col_sels = max_idxs[idx_sels, 1]
ys = start_idx + col_sels
X_new[:, start_idx:end_idx] = 0
X_new[xs, ys] = 1
return X_new
@Substitution(
sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
n_jobs=_n_jobs_docstring,
random_state=_random_state_docstring,
)
class SMOTEN(SMOTE):
"""Synthetic Minority Over-sampling Technique for Nominal.
This method is refered as SMOTEN in [1]_. It expects that the data to
resample are only made of categorical features.
Read more in the :ref:`User Guide <smote_adasyn>`.
.. versionadded:: 0.8
Parameters
----------
{sampling_strategy}
{random_state}
k_neighbors : int or object, default=5
If ``int``, number of nearest neighbours to used to construct synthetic
samples. If object, an estimator that inherits from
:class:`~sklearn.neighbors.base.KNeighborsMixin` that will be used to
find the k_neighbors.
{n_jobs}
See Also
--------
SMOTE : Over-sample using SMOTE.
SMOTENC : Over-sample using SMOTE for continuous and categorical features.
BorderlineSMOTE : Over-sample using the borderline-SMOTE variant.
SVMSMOTE : Over-sample using the SVM-SMOTE variant.
ADASYN : Over-sample using ADASYN.
KMeansSMOTE : Over-sample applying a clustering before to oversample using
SMOTE.
Notes
-----
See the original papers: [1]_ for more details.
Supports multi-class resampling. A one-vs.-rest scheme is used as
originally proposed in [1]_.
References
----------
.. [1] N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, "SMOTE:
synthetic minority over-sampling technique," Journal of artificial
intelligence research, 321-357, 2002.
Examples
--------
>>> import numpy as np
>>> X = np.array(["A"] * 10 + ["B"] * 20 + ["C"] * 30, dtype=object).reshape(-1, 1)
>>> y = np.array([0] * 20 + [1] * 40, dtype=np.int32)
>>> from collections import Counter
>>> print(f"Original class counts: {{Counter(y)}}")
Original class counts: Counter({{1: 40, 0: 20}})
>>> from imblearn.over_sampling import SMOTEN
>>> sampler = SMOTEN(random_state=0)
>>> X_res, y_res = sampler.fit_resample(X, y)
>>> print(f"Class counts after resampling {{Counter(y_res)}}")
Class counts after resampling Counter({{0: 40, 1: 40}})
"""
def _check_X_y(self, X, y):
"""Check should accept strings and not sparse matrices."""
y, binarize_y = check_target_type(y, indicate_one_vs_all=True)
X, y = self._validate_data(
X,
y,
reset=True,
dtype=None,
accept_sparse=False,
)
return X, y, binarize_y
def _validate_estimator(self):
"""Force to use precomputed distance matrix."""
super()._validate_estimator()
self.nn_k_.set_params(metric="precomputed")
def _make_samples(self, X_class, klass, y_dtype, nn_indices, n_samples):
random_state = check_random_state(self.random_state)
# generate sample indices that will be used to generate new samples
samples_indices = random_state.choice(
np.arange(X_class.shape[0]), size=n_samples, replace=True
)
# for each drawn samples, select its k-neighbors and generate a sample
# where for each feature individually, each category generated is the
# most common category
X_new = np.squeeze(
stats.mode(X_class[nn_indices[samples_indices]], axis=1).mode, axis=1
)
y_new = np.full(n_samples, fill_value=klass, dtype=y_dtype)
return X_new, y_new
def _fit_resample(self, X, y):
self._validate_estimator()
X_resampled = [X.copy()]
y_resampled = [y.copy()]
encoder = OrdinalEncoder(dtype=np.int32)
X_encoded = encoder.fit_transform(X)
vdm = ValueDifferenceMetric(
n_categories=[len(cat) for cat in encoder.categories_]
).fit(X_encoded, y)
for class_sample, n_samples in self.sampling_strategy_.items():
if n_samples == 0:
continue
target_class_indices = np.flatnonzero(y == class_sample)
X_class = _safe_indexing(X_encoded, target_class_indices)
X_class_dist = vdm.pairwise(X_class)
self.nn_k_.fit(X_class_dist)
# the kneigbors search will include the sample itself which is
# expected from the original algorithm
nn_indices = self.nn_k_.kneighbors(X_class_dist, return_distance=False)
X_new, y_new = self._make_samples(
X_class, class_sample, y.dtype, nn_indices, n_samples
)
X_new = encoder.inverse_transform(X_new)
X_resampled.append(X_new)
y_resampled.append(y_new)
X_resampled = np.vstack(X_resampled)
y_resampled = np.hstack(y_resampled)
return X_resampled, y_resampled
def _more_tags(self):
return {"X_types": ["2darray", "dataframe", "string"]}