-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy path_bagging.py
541 lines (446 loc) · 19.4 KB
/
_bagging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
"""Bagging classifier trained on balanced bootstrap samples."""
# Authors: Guillaume Lemaitre <[email protected]>
# Christos Aridas
# License: MIT
import copy
import numbers
import warnings
import numpy as np
import sklearn
from sklearn.base import clone
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble._bagging import _parallel_decision_function
from sklearn.ensemble._base import _partition_estimators
from sklearn.exceptions import NotFittedError
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils.fixes import parse_version
from sklearn.utils.multiclass import type_of_target
from sklearn.utils.validation import check_is_fitted
try:
# scikit-learn >= 1.2
from sklearn.utils.parallel import Parallel, delayed
except (ImportError, ModuleNotFoundError):
from joblib import Parallel
from sklearn.utils.fixes import delayed
from ..base import _ParamsValidationMixin
from ..pipeline import Pipeline
from ..under_sampling import RandomUnderSampler
from ..under_sampling.base import BaseUnderSampler
from ..utils import Substitution, check_sampling_strategy, check_target_type
from ..utils._available_if import available_if
from ..utils._docstring import _n_jobs_docstring, _random_state_docstring
from ..utils._param_validation import HasMethods, Interval, StrOptions
from ..utils.fixes import _fit_context
from ._common import (
_bagging_parameter_constraints,
_estimate_reweighting,
_estimator_has,
)
sklearn_version = parse_version(sklearn.__version__)
@Substitution(
sampling_strategy=BaseUnderSampler._sampling_strategy_docstring,
n_jobs=_n_jobs_docstring,
random_state=_random_state_docstring,
)
class BalancedBaggingClassifier(_ParamsValidationMixin, BaggingClassifier):
"""A Bagging classifier with additional balancing.
This implementation of Bagging is similar to the scikit-learn
implementation. It includes an additional step to balance the training set
at fit time using a given sampler.
This classifier can serves as a basis to implement various methods such as
Exactly Balanced Bagging [6]_, Roughly Balanced Bagging [7]_,
Over-Bagging [6]_, or SMOTE-Bagging [8]_.
Read more in the :ref:`User Guide <bagging>`.
Parameters
----------
estimator : estimator object, default=None
The base estimator to fit on random subsets of the dataset.
If None, then the base estimator is a decision tree.
.. versionadded:: 0.10
n_estimators : int, default=10
The number of base estimators in the ensemble.
max_samples : int or float, default=1.0
The number of samples to draw from X to train each base estimator.
- If int, then draw ``max_samples`` samples.
- If float, then draw ``max_samples * X.shape[0]`` samples.
max_features : int or float, default=1.0
The number of features to draw from X to train each base estimator.
- If int, then draw ``max_features`` features.
- If float, then draw ``max_features * X.shape[1]`` features.
bootstrap : bool, default=True
Whether samples are drawn with replacement.
.. note::
Note that this bootstrap will be generated from the resampled
dataset.
bootstrap_features : bool, default=False
Whether features are drawn with replacement.
oob_score : bool, default=False
Whether to use out-of-bag samples to estimate
the generalization error.
warm_start : bool, default=False
When set to True, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit
a whole new ensemble.
{sampling_strategy}
replacement : bool, default=False
Whether or not to randomly sample with replacement or not when
`sampler is None`, corresponding to a
:class:`~imblearn.under_sampling.RandomUnderSampler`.
{n_jobs}
{random_state}
verbose : int, default=0
Controls the verbosity of the building process.
sampler : sampler object, default=None
The sampler used to balanced the dataset before to bootstrap
(if `bootstrap=True`) and `fit` a base estimator. By default, a
:class:`~imblearn.under_sampling.RandomUnderSampler` is used.
.. versionadded:: 0.8
recalibrate : bool, default=False
Whether to recalibrate the output of `predict_proba` and `predict_log_proba`
using the sampling ratio of the different bootstrap samples. Note that the
correction is only working for binary classification.
.. versionadded:: 0.13
Attributes
----------
estimator_ : estimator
The base estimator from which the ensemble is grown.
.. versionadded:: 0.10
n_features_ : int
The number of features when `fit` is performed.
.. deprecated:: 1.0
`n_features_` is deprecated in `scikit-learn` 1.0 and will be removed
in version 1.2. When the minimum version of `scikit-learn` supported
by `imbalanced-learn` will reach 1.2, this attribute will be removed.
estimators_ : list of estimators
The collection of fitted base estimators.
sampler_ : sampler object
The validate sampler created from the `sampler` parameter.
estimators_samples_ : list of ndarray
The subset of drawn samples (i.e., the in-bag samples) for each base
estimator. Each subset is defined by a boolean mask.
estimators_features_ : list of ndarray
The subset of drawn features for each base estimator.
classes_ : ndarray of shape (n_classes,)
The classes labels.
n_classes_ : int or list
The number of classes.
oob_score_ : float
Score of the training dataset obtained using an out-of-bag estimate.
oob_decision_function_ : ndarray of shape (n_samples, n_classes)
Decision function computed with out-of-bag estimate on the training
set. If n_estimators is small it might be possible that a data point
was never left out during the bootstrap. In this case,
``oob_decision_function_`` might contain NaN.
n_features_in_ : int
Number of features in the input dataset.
.. versionadded:: 0.9
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during `fit`. Defined only when `X` has feature
names that are all strings.
.. versionadded:: 0.9
See Also
--------
BalancedRandomForestClassifier : Random forest applying random-under
sampling to balance the different bootstraps.
EasyEnsembleClassifier : Ensemble of AdaBoost classifier trained on
balanced bootstraps.
RUSBoostClassifier : AdaBoost classifier were each bootstrap is balanced
using random-under sampling at each round of boosting.
Notes
-----
This is possible to turn this classifier into a balanced random forest [5]_
by passing a :class:`~sklearn.tree.DecisionTreeClassifier` with
`max_features='auto'` as a base estimator.
See
:ref:`sphx_glr_auto_examples_ensemble_plot_comparison_ensemble_classifier.py`.
References
----------
.. [1] L. Breiman, "Pasting small votes for classification in large
databases and on-line", Machine Learning, 36(1), 85-103, 1999.
.. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140,
1996.
.. [3] T. Ho, "The random subspace method for constructing decision
forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844,
1998.
.. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine
Learning and Knowledge Discovery in Databases, 346-361, 2012.
.. [5] C. Chen Chao, A. Liaw, and L. Breiman. "Using random forest to
learn imbalanced data." University of California, Berkeley 110,
2004.
.. [6] R. Maclin, and D. Opitz. "An empirical evaluation of bagging and
boosting." AAAI/IAAI 1997 (1997): 546-551.
.. [7] S. Hido, H. Kashima, and Y. Takahashi. "Roughly balanced bagging
for imbalanced data." Statistical Analysis and Data Mining: The ASA
Data Science Journal 2.5‐6 (2009): 412-426.
.. [8] S. Wang, and X. Yao. "Diversity analysis on imbalanced data sets by
using ensemble models." 2009 IEEE symposium on computational
intelligence and data mining. IEEE, 2009.
Examples
--------
>>> from collections import Counter
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.metrics import confusion_matrix
>>> from imblearn.ensemble import BalancedBaggingClassifier
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
>>> print('Original dataset shape %s' % Counter(y))
Original dataset shape Counter({{1: 900, 0: 100}})
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... random_state=0)
>>> bbc = BalancedBaggingClassifier(random_state=42)
>>> bbc.fit(X_train, y_train)
BalancedBaggingClassifier(...)
>>> y_pred = bbc.predict(X_test)
>>> print(confusion_matrix(y_test, y_pred))
[[ 23 0]
[ 2 225]]
"""
# make a deepcopy to not modify the original dictionary
if sklearn_version >= parse_version("1.4"):
_parameter_constraints = copy.deepcopy(BaggingClassifier._parameter_constraints)
else:
_parameter_constraints = copy.deepcopy(_bagging_parameter_constraints)
_parameter_constraints.update(
{
"sampling_strategy": [
Interval(numbers.Real, 0, 1, closed="right"),
StrOptions({"auto", "majority", "not minority", "not majority", "all"}),
dict,
callable,
],
"replacement": ["boolean"],
"sampler": [HasMethods(["fit_resample"]), None],
"recalibrate": ["boolean"],
}
)
# TODO: remove when minimum supported version of scikit-learn is 1.4
if "base_estimator" in _parameter_constraints:
del _parameter_constraints["base_estimator"]
def __init__(
self,
estimator=None,
n_estimators=10,
*,
max_samples=1.0,
max_features=1.0,
bootstrap=True,
bootstrap_features=False,
oob_score=False,
warm_start=False,
sampling_strategy="auto",
replacement=False,
n_jobs=None,
random_state=None,
verbose=0,
sampler=None,
recalibrate=False,
):
super().__init__(
n_estimators=n_estimators,
max_samples=max_samples,
max_features=max_features,
bootstrap=bootstrap,
bootstrap_features=bootstrap_features,
oob_score=oob_score,
warm_start=warm_start,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
)
self.estimator = estimator
self.sampling_strategy = sampling_strategy
self.replacement = replacement
self.sampler = sampler
self.recalibrate = recalibrate
def _validate_y(self, y):
y_encoded = super()._validate_y(y)
if (
isinstance(self.sampling_strategy, dict)
and self.sampler_._sampling_type != "bypass"
):
self._sampling_strategy = {
np.where(self.classes_ == key)[0][0]: value
for key, value in check_sampling_strategy(
self.sampling_strategy,
y,
self.sampler_._sampling_type,
).items()
}
else:
self._sampling_strategy = self.sampling_strategy
return y_encoded
def _validate_estimator(self, default=DecisionTreeClassifier()):
"""Check the estimator and the n_estimator attribute, set the
`estimator_` attribute."""
if self.estimator is not None:
estimator = clone(self.estimator)
else:
estimator = clone(default)
if self.sampler_._sampling_type != "bypass":
self.sampler_.set_params(sampling_strategy=self._sampling_strategy)
self.estimator_ = Pipeline(
[("sampler", self.sampler_), ("classifier", estimator)]
)
# TODO: remove when supporting scikit-learn>=1.2
@property
def n_features_(self):
"""Number of features when ``fit`` is performed."""
warnings.warn(
"`n_features_` was deprecated in scikit-learn 1.0. This attribute will "
"not be accessible when the minimum supported version of scikit-learn "
"is 1.2.",
FutureWarning,
)
return self.n_features_in_
@_fit_context(prefer_skip_nested_validation=False)
def fit(self, X, y):
"""Build a Bagging ensemble of estimators from the training set (X, y).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
y : array-like of shape (n_samples,)
The target values (class labels in classification, real numbers in
regression).
Returns
-------
self : object
Fitted estimator.
"""
# overwrite the base class method by disallowing `sample_weight`
self._validate_params()
if self.recalibrate:
# compute the type of target only if we need to recalibrate since this is
# potentially costly
y_type = type_of_target(y)
if y_type != "binary":
raise ValueError(
"Only possible to recalibrate the probabilities for binary "
f"classification. Got {y_type} instead."
)
return super().fit(X, y)
def _fit(self, X, y, max_samples=None, max_depth=None, sample_weight=None):
check_target_type(y)
# the sampler needs to be validated before to call _fit because
# _validate_y is called before _validate_estimator and would require
# to know which type of sampler we are using.
if self.sampler is None:
self.sampler_ = RandomUnderSampler(
replacement=self.replacement,
)
else:
self.sampler_ = clone(self.sampler)
# RandomUnderSampler is not supporting sample_weight. We need to pass
# None.
return super()._fit(X, y, self.max_samples)
def predict_proba(self, X):
"""Predict class probabilities for X.
The predicted class probabilities of an input sample is computed as
the mean predicted class probabilities of the base estimators in the
ensemble. If base estimators do not implement a ``predict_proba``
method, then it resorts to voting and the predicted class probabilities
of an input sample represents the proportion of estimators predicting
each class.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
p : ndarray of shape (n_samples, n_classes)
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
proba = super().predict_proba(X)
if self.recalibrate:
weight = _estimate_reweighting([est[0] for est in self.estimators_])
proba[:, 1] /= proba[:, 1] + (1 - proba[:, 1]) / weight
proba[:, 0] = 1 - proba[:, 1]
return proba
def predict_log_proba(self, X):
"""Predict class log-probabilities for X.
The predicted class log-probabilities of an input sample is computed as
the log of the mean predicted class probabilities of the base
estimators in the ensemble.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
p : ndarray of shape (n_samples, n_classes)
The class log-probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
# To take into account the calibration correction, we use our implementation
# of `predict_proba` and then apply the log.
return np.log(self.predict_proba(X))
# TODO: remove when minimum supported version of scikit-learn is 1.1
@available_if(_estimator_has("decision_function"))
def decision_function(self, X):
"""Average of the decision functions of the base classifiers.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
score : ndarray of shape (n_samples, k)
The decision function of the input samples. The columns correspond
to the classes in sorted order, as they appear in the attribute
``classes_``. Regression and binary classification are special
cases with ``k == 1``, otherwise ``k==n_classes``.
"""
check_is_fitted(self)
# Check data
X = self._validate_data(
X,
accept_sparse=["csr", "csc"],
dtype=None,
force_all_finite=False,
reset=False,
)
# Parallel loop
n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)
all_decisions = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
delayed(_parallel_decision_function)(
self.estimators_[starts[i] : starts[i + 1]],
self.estimators_features_[starts[i] : starts[i + 1]],
X,
)
for i in range(n_jobs)
)
# Reduce
decisions = sum(all_decisions) / self.n_estimators
return decisions
@property
def base_estimator_(self):
"""Attribute for older sklearn version compatibility."""
error = AttributeError(
f"{self.__class__.__name__} object has no attribute 'base_estimator_'."
)
if sklearn_version < parse_version("1.2"):
# The base class require to have the attribute defined. For scikit-learn
# > 1.2, we are going to raise an error.
try:
check_is_fitted(self)
return self.estimator_
except NotFittedError:
raise error
raise error
def _more_tags(self):
tags = super()._more_tags()
tags_key = "_xfail_checks"
failing_test = "check_estimators_nan_inf"
reason = "Fails because the sampler removed infinity and NaN values"
if tags_key in tags:
tags[tags_key][failing_test] = reason
else:
tags[tags_key] = {failing_test: reason}
return tags