-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy path_easy_ensemble.py
453 lines (377 loc) · 15.7 KB
/
_easy_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
"""Class to perform under-sampling using easy ensemble."""
# Authors: Guillaume Lemaitre <[email protected]>
# Christos Aridas
# License: MIT
import copy
import numbers
import warnings
import numpy as np
import sklearn
from sklearn.base import clone
from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier
from sklearn.ensemble._bagging import _parallel_decision_function
from sklearn.ensemble._base import _partition_estimators
from sklearn.exceptions import NotFittedError
from sklearn.utils._tags import _safe_tags
from sklearn.utils.fixes import parse_version
from sklearn.utils.multiclass import type_of_target
from sklearn.utils.validation import check_is_fitted
try:
# scikit-learn >= 1.2
from sklearn.utils.parallel import Parallel, delayed
except (ImportError, ModuleNotFoundError):
from joblib import Parallel
from sklearn.utils.fixes import delayed
from ..base import _ParamsValidationMixin
from ..pipeline import Pipeline
from ..under_sampling import RandomUnderSampler
from ..under_sampling.base import BaseUnderSampler
from ..utils import Substitution, check_sampling_strategy, check_target_type
from ..utils._available_if import available_if
from ..utils._docstring import _n_jobs_docstring, _random_state_docstring
from ..utils._param_validation import Interval, StrOptions
from ..utils.fixes import _fit_context
from ._common import (
_bagging_parameter_constraints,
_estimate_reweighting,
_estimator_has,
)
MAX_INT = np.iinfo(np.int32).max
sklearn_version = parse_version(sklearn.__version__)
@Substitution(
sampling_strategy=BaseUnderSampler._sampling_strategy_docstring,
n_jobs=_n_jobs_docstring,
random_state=_random_state_docstring,
)
class EasyEnsembleClassifier(_ParamsValidationMixin, BaggingClassifier):
"""Bag of balanced boosted learners also known as EasyEnsemble.
This algorithm is known as EasyEnsemble [1]_. The classifier is an
ensemble of AdaBoost learners trained on different balanced bootstrap
samples. The balancing is achieved by random under-sampling.
Read more in the :ref:`User Guide <boosting>`.
.. versionadded:: 0.4
Parameters
----------
n_estimators : int, default=10
Number of AdaBoost learners in the ensemble.
estimator : estimator object, default=AdaBoostClassifier()
The base AdaBoost classifier used in the inner ensemble. Note that you
can set the number of inner learner by passing your own instance.
.. versionadded:: 0.10
warm_start : bool, default=False
When set to True, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit
a whole new ensemble.
{sampling_strategy}
replacement : bool, default=False
Whether or not to sample randomly with replacement or not.
{n_jobs}
{random_state}
verbose : int, default=0
Controls the verbosity of the building process.
recalibrate : bool, default=False
Whether to recalibrate the output of `predict_proba` and `predict_log_proba`
using the sampling ratio of the different bootstrap samples. Note that the
correction is only working for binary classification.
.. versionadded:: 0.13
Attributes
----------
estimator_ : estimator
The base estimator from which the ensemble is grown.
.. versionadded:: 0.10
estimators_ : list of estimators
The collection of fitted base estimators.
estimators_samples_ : list of arrays
The subset of drawn samples for each base estimator.
estimators_features_ : list of arrays
The subset of drawn features for each base estimator.
classes_ : array, shape (n_classes,)
The classes labels.
n_classes_ : int or list
The number of classes.
n_features_ : int
The number of features when `fit` is performed.
.. deprecated:: 1.0
`n_features_` is deprecated in `scikit-learn` 1.0 and will be removed
in version 1.2. When the minimum version of `scikit-learn` supported
by `imbalanced-learn` will reach 1.2, this attribute will be removed.
n_features_in_ : int
Number of features in the input dataset.
.. versionadded:: 0.9
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during `fit`. Defined only when `X` has feature
names that are all strings.
.. versionadded:: 0.9
See Also
--------
BalancedBaggingClassifier : Bagging classifier for which each base
estimator is trained on a balanced bootstrap.
BalancedRandomForestClassifier : Random forest applying random-under
sampling to balance the different bootstraps.
RUSBoostClassifier : AdaBoost classifier were each bootstrap is balanced
using random-under sampling at each round of boosting.
Notes
-----
The method is described in [1]_.
Supports multi-class resampling by sampling each class independently.
References
----------
.. [1] X. Y. Liu, J. Wu and Z. H. Zhou, "Exploratory Undersampling for
Class-Imbalance Learning," in IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539-550,
April 2009.
Examples
--------
>>> from collections import Counter
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.metrics import confusion_matrix
>>> from imblearn.ensemble import EasyEnsembleClassifier
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
>>> print('Original dataset shape %s' % Counter(y))
Original dataset shape Counter({{1: 900, 0: 100}})
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... random_state=0)
>>> eec = EasyEnsembleClassifier(random_state=42)
>>> eec.fit(X_train, y_train)
EasyEnsembleClassifier(...)
>>> y_pred = eec.predict(X_test)
>>> print(confusion_matrix(y_test, y_pred))
[[ 23 0]
[ 2 225]]
"""
# make a deepcopy to not modify the original dictionary
if sklearn_version >= parse_version("1.4"):
_parameter_constraints = copy.deepcopy(BaggingClassifier._parameter_constraints)
else:
_parameter_constraints = copy.deepcopy(_bagging_parameter_constraints)
excluded_params = {
"bootstrap",
"bootstrap_features",
"max_features",
"oob_score",
"max_samples",
}
for param in excluded_params:
_parameter_constraints.pop(param, None)
_parameter_constraints.update(
{
"sampling_strategy": [
Interval(numbers.Real, 0, 1, closed="right"),
StrOptions({"auto", "majority", "not minority", "not majority", "all"}),
dict,
callable,
],
"replacement": ["boolean"],
"recalibrate": ["boolean"],
}
)
# TODO: remove when minimum supported version of scikit-learn is 1.4
if "base_estimator" in _parameter_constraints:
del _parameter_constraints["base_estimator"]
def __init__(
self,
n_estimators=10,
estimator=None,
*,
warm_start=False,
sampling_strategy="auto",
replacement=False,
n_jobs=None,
random_state=None,
verbose=0,
recalibrate=False,
):
super().__init__(
n_estimators=n_estimators,
max_samples=1.0,
max_features=1.0,
bootstrap=False,
bootstrap_features=False,
oob_score=False,
warm_start=warm_start,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
)
self.estimator = estimator
self.sampling_strategy = sampling_strategy
self.replacement = replacement
self.recalibrate = recalibrate
def _validate_y(self, y):
y_encoded = super()._validate_y(y)
if isinstance(self.sampling_strategy, dict):
self._sampling_strategy = {
np.where(self.classes_ == key)[0][0]: value
for key, value in check_sampling_strategy(
self.sampling_strategy,
y,
"under-sampling",
).items()
}
else:
self._sampling_strategy = self.sampling_strategy
return y_encoded
def _validate_estimator(self, default=AdaBoostClassifier(algorithm="SAMME")):
"""Check the estimator and the n_estimator attribute, set the
`estimator_` attribute."""
if self.estimator is not None:
estimator = clone(self.estimator)
else:
estimator = clone(default)
sampler = RandomUnderSampler(
sampling_strategy=self._sampling_strategy,
replacement=self.replacement,
)
self.estimator_ = Pipeline([("sampler", sampler), ("classifier", estimator)])
# TODO: remove when supporting scikit-learn>=1.2
@property
def n_features_(self):
"""Number of features when ``fit`` is performed."""
warnings.warn(
"`n_features_` was deprecated in scikit-learn 1.0. This attribute will "
"not be accessible when the minimum supported version of scikit-learn "
"is 1.2.",
FutureWarning,
)
return self.n_features_in_
@_fit_context(prefer_skip_nested_validation=False)
def fit(self, X, y):
"""Build a Bagging ensemble of estimators from the training set (X, y).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
y : array-like of shape (n_samples,)
The target values (class labels in classification, real numbers in
regression).
Returns
-------
self : object
Fitted estimator.
"""
self._validate_params()
# overwrite the base class method by disallowing `sample_weight`
if self.recalibrate:
# compute the type of target only if we need to recalibrate since this is
# potentially costly
y_type = type_of_target(y)
if y_type != "binary":
raise ValueError(
"Only possible to recalibrate the probabilities for binary "
f"classification. Got {y_type} instead."
)
return super().fit(X, y)
def _fit(self, X, y, max_samples=None, max_depth=None, sample_weight=None):
check_target_type(y)
# RandomUnderSampler is not supporting sample_weight. We need to pass
# None.
return super()._fit(X, y, self.max_samples)
def predict_proba(self, X):
"""Predict class probabilities for X.
The predicted class probabilities of an input sample is computed as
the mean predicted class probabilities of the base estimators in the
ensemble. If base estimators do not implement a ``predict_proba``
method, then it resorts to voting and the predicted class probabilities
of an input sample represents the proportion of estimators predicting
each class.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
p : ndarray of shape (n_samples, n_classes)
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
proba = super().predict_proba(X)
if self.recalibrate:
weight = _estimate_reweighting([est[0] for est in self.estimators_])
proba[:, 1] /= proba[:, 1] + (1 - proba[:, 1]) / weight
proba[:, 0] = 1 - proba[:, 1]
return proba
def predict_log_proba(self, X):
"""Predict class log-probabilities for X.
The predicted class log-probabilities of an input sample is computed as
the log of the mean predicted class probabilities of the base
estimators in the ensemble.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
p : ndarray of shape (n_samples, n_classes)
The class log-probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
# To take into account the calibration correction, we use our implementation
# of `predict_proba` and then apply the log.
return np.log(self.predict_proba(X))
# TODO: remove when minimum supported version of scikit-learn is 1.1
@available_if(_estimator_has("decision_function"))
def decision_function(self, X):
"""Average of the decision functions of the base classifiers.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
score : ndarray of shape (n_samples, k)
The decision function of the input samples. The columns correspond
to the classes in sorted order, as they appear in the attribute
``classes_``. Regression and binary classification are special
cases with ``k == 1``, otherwise ``k==n_classes``.
"""
check_is_fitted(self)
# Check data
X = self._validate_data(
X,
accept_sparse=["csr", "csc"],
dtype=None,
force_all_finite=False,
reset=False,
)
# Parallel loop
n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)
all_decisions = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
delayed(_parallel_decision_function)(
self.estimators_[starts[i] : starts[i + 1]],
self.estimators_features_[starts[i] : starts[i + 1]],
X,
)
for i in range(n_jobs)
)
# Reduce
decisions = sum(all_decisions) / self.n_estimators
return decisions
@property
def base_estimator_(self):
"""Attribute for older sklearn version compatibility."""
error = AttributeError(
f"{self.__class__.__name__} object has no attribute 'base_estimator_'."
)
if sklearn_version < parse_version("1.2"):
# The base class require to have the attribute defined. For scikit-learn
# > 1.2, we are going to raise an error.
try:
check_is_fitted(self)
return self.estimator_
except NotFittedError:
raise error
raise error
def _get_estimator(self):
if self.estimator is None:
return AdaBoostClassifier(algorithm="SAMME")
return self.estimator
# TODO: remove when minimum supported version of scikit-learn is 1.5
def _more_tags(self):
return {"allow_nan": _safe_tags(self._get_estimator(), "allow_nan")}