Applies a plane rotation.
var csrot = require( '@stdlib/blas/base/csrot' );
Applies a plane rotation.
var Complex64Array = require( '@stdlib/array/complex64' );
var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot( x.length, x, 1, y, 1, 0.8, 0.6 );
// x => <Complex64Array>[ ~0.8, ~1.6, ~2.4, ~3.2, 4.0, ~4.8, ~5.6, ~6.4 ]
// y => <Complex64Array>[ ~-0.6, ~-1.2, ~-1.8, ~-2.4, -3.0, ~-3.6, ~-4.2, ~-4.8 ]
The function has the following parameters:
- N: number of indexed elements.
- x: first input
Complex64Array
. - strideX: index increment for
x
. - y: second input
Complex64Array
. - strideY: index increment for
y
.
The N
and stride parameters determine how values from x
and y
are accessed at runtime. For example, to apply a plane rotation to every other element,
var Complex64Array = require( '@stdlib/array/complex64' );
var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot( 2, x, 2, y, 2, 0.8, 0.6 );
// x => <Complex64Array>[ ~0.8, ~1.6, 3.0, 4.0, 4.0, ~4.8, 7.0, 8.0 ]
// y => <Complex64Array>[ ~-0.6, ~-1.2, 0.0, 0.0, -3.0, ~-3.6, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Complex64Array = require( '@stdlib/array/complex64' );
// Initial arrays...
var x0 = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y0 = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var x1 = new Complex64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Complex64Array( y0.buffer, y0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
csrot( 2, x1, -2, y1, 1, 0.8, 0.6 );
// x0 => <Complex64Array>[ 1.0, 2.0, ~2.4, ~3.2, 5.0, 6.0, ~5.6, ~6.4 ]
// y0 => <Complex64Array>[ 0.0, 0.0, 0.0, 0.0, ~-4.2, ~-4.8, ~-1.8, ~-2.4 ]
Applies a plane rotation using alternative indexing semantics.
var Complex64Array = require( '@stdlib/array/complex64' );
var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot.ndarray( x.length, x, 1, 0, y, 1, 0, 0.8, 0.6 );
// x => <Complex64Array>[ ~0.8, ~1.6, ~2.4, ~3.2, 4.0, ~4.8 ]
// y => <Complex64Array>[ ~-0.6, ~-1.2, ~-1.8, ~-2.4, -3.0, ~-3.6 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to apply a plane rotation to every other element starting from the second element,
var Complex64Array = require( '@stdlib/array/complex64' );
var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot.ndarray( 2, x, 2, 1, y, 2, 1, 0.8, 0.6 );
// x => <Complex64Array>[ 1.0, 2.0, ~2.4, ~3.2, 5.0, 6.0, ~5.6, ~6.4 ]
// y => <Complex64Array>[ 0.0, 0.0, ~-1.8, ~-2.4, 0.0, 0.0, ~-4.2, ~-4.8 ]
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var Complex64 = require( '@stdlib/complex/float32/ctor' );
var ccopy = require( '@stdlib/blas/base/ccopy' );
var zeros = require( '@stdlib/array/zeros' );
var logEach = require( '@stdlib/console/log-each' );
var csrot = require( '@stdlib/blas/base/csrot' );
function rand() {
return new Complex64( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}
// Generate random input arrays:
var x = filledarrayBy( 10, 'complex64', rand );
var xc = ccopy( x.length, x, 1, zeros( x.length, 'complex64' ), 1 );
var y = filledarrayBy( 10, 'complex64', rand );
var yc = ccopy( y.length, y, 1, zeros( y.length, 'complex64' ), 1 );
// Apply a plane rotation:
csrot( x.length, x, 1, y, 1, 0.8, 0.6 );
// Print the results:
logEach( '(%s,%s) => (%s,%s)', xc, yc, x, y );
#include "stdlib/blas/base/csrot.h"
Applies a plane rotation.
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f }; // interleaved real and imaginary components
float y[] = { 5.0f, 6.0f, 7.0f, 8.0f };
c_csrot( 2, (void *)x, 1, (void *)y, 1, 0.8f, 0.6f );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[inout] void*
first input array. - strideX:
[in] CBLAS_INT
index increment forX
. - Y:
[inout] void*
second input array. - strideY:
[in] CBLAS_INT
index increment forY
. - c:
[in] float
cosine of the angle of rotation. - s:
[in] float
sine of the angle of rotation.
void c_csrot( const CBLAS_INT N, void *X, const CBLAS_INT strideX, void *Y, const CBLAS_INT strideY, const float c, const float s );
Applies a plane rotation using alternative indexing semantics.
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f }; // interleaved real and imaginary components
float y[] = { 5.0f, 6.0f, 7.0f, 8.0f };
c_csrot_ndarray( 2, (void *)x, 1, 0, (void *)y, 1, 0, 0.8f, 0.6f );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[inout] void*
first input array. - strideX:
[in] CBLAS_INT
index increment forX
. - offsetX:
[in] CBLAS_INT
starting index forX
. - Y:
[inout] void*
second input array. - strideY:
[in] CBLAS_INT
index increment forY
. - offsetY:
[in] CBLAS_INT
starting index forY
. - c:
[in] float
cosine of the angle of rotation. - s:
[in] float
sine of the angle of rotation.
void c_csrot_ndarray( const CBLAS_INT N, void *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, void *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY, const float c, const float s );
#include "stdlib/blas/base/csrot.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
// Specify the number of elements:
const int N = 4;
// Specify stride lengths:
const int strideX = 1;
const int strideY = -1;
// Copy elements:
c_csrot( N, (void *)x, strideX, (void *)y, strideY, 0.8f, 0.6f );
// Print the result:
for ( int i = 0; i < N; i++ ) {
printf( "x[ %i ] = %f + %fj\n", i, x[ i*2 ], x[ (i*2)+1 ] );
printf( "y[ %i ] = %f + %fj\n", i, y[ i*2 ], y[ (i*2)+1 ] );
}
}