A deep-learning based online denoising and reconstruction method for time of flight (TOF) detectors in PyTorch.
from evaluation import Evaluator
# Initialize evaluator
e: Evaluator = Evaluator({}, output_dir="outputs/", load_max=0)
# Create spectrogram with 3 peaks with seed 12 and simulate detector image
e.plot_spectrogram_detector_image(3, 12)
# Initialize evaluator with General model
model_dict = {
"General model": "outputs/tof_reconstructor/hj69jsmh/checkpoints"}
e: Evaluator = Evaluator(model_dict, output_dir="outputs/", load_max=10)
# Disable TOF detectors on position #8 and #13
e.plot_reconstructing_tofs_comparison([7, 12], "General model")
If you find this useful in your research, please consider citing:
Reconstructing Time-of-Flight Detector Values of Angular Streaking Using Machine Learning.
@misc{meier2025reconstructingtimeofflightdetectorvalues,
title={Reconstructing Time-of-Flight Detector Values of Angular Streaking Using Machine Learning},
author={David Meier and Wolfram Helml and Thorsten Otto and Bernhard Sick and Jens Viefhaus and Gregor Hartmann},
year={2025},
eprint={2501.08966},
archivePrefix={arXiv},
primaryClass={physics.data-an},
url={https://arxiv.org/abs/2501.08966},
}