Skip to content

Trying to get Sentry integration to work in the demo #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 27 additions & 13 deletions pinecone_demo/docs_retrieval_langchain.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,33 +3,47 @@
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA

import sentry_sdk
from sentry_sdk.integrations.opentelemetry import SentrySpanProcessor, SentryPropagator
from traceloop.sdk import Traceloop

sentry_sdk.init(
dsn="https://0b61b297b1e1a9aa6287f392dc96aa34@o4506150677970945.ingest.sentry.io/4506150679150592",
enable_tracing=True,
sample_rate=1.0,
# set the instrumenter to use OpenTelemetry instead of Sentry
instrumenter="otel",
)

# Traceloop.init(
# disable_batch=True, processor=SentrySpanProcessor(), propagator=SentryPropagator()
# )

Traceloop.init(disable_batch=True)

index_name = 'gpt-4-langchain-docs-fast'
model_name = 'text-embedding-ada-002'
from opentelemetry import trace
from opentelemetry.propagate import set_global_textmap
from sentry_sdk.integrations.opentelemetry import SentrySpanProcessor, SentryPropagator

provider = trace.get_tracer_provider()
provider.add_span_processor(SentrySpanProcessor())
set_global_textmap(SentryPropagator())

index_name = "gpt-4-langchain-docs-fast"
model_name = "text-embedding-ada-002"

index = pinecone.Index(index_name)

embed = OpenAIEmbeddings(
model=model_name,
)

vectorstore = Pinecone(
index, embed.embed_query, "text"
)
vectorstore = Pinecone(index, embed.embed_query, "text")

llm = ChatOpenAI(
model_name='gpt-3.5-turbo',
temperature=0.0
)
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.0)

qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever()
llm=llm, chain_type="stuff", retriever=vectorstore.as_retriever()
)

print(qa.run("how do I build an agent with LangChain?"))
Loading